The Dynamics of Nearly Abelian Polynomial Semigroups at Infinity

By Tatsunori HARADA
Department of Mathematics, Kyoto University
(Communicated by Kiyosi ITÔ, M. J. A., March 12, 1997)

Abstract

We prove that a nearly abelian polynomial semigroup has the simultaneously normalizing coordinate in the neighborhood of infinity. This result has been expected by A. Hinkkanen and G. J. Martin as Conjecture 7.1 in [5].

We begin this paper with some definitions, which is given by [5].

Definition. A polynomial semigroup G is a semigroup generated by a family of non-constant polynomial functions on $\boldsymbol{C} \cup\{\infty\}$ to itself. Here the semigroup operation is functional composition. And let $\left\langle f_{1}, \ldots, f_{n}, \ldots\right\rangle$ denote the semigroup generated by $f_{1}, \ldots, f_{n}, \ldots$ If G is a polynomial semigroup, we define the set of normality $N(G)$ as following;
$N(G)=\{z \in \boldsymbol{C} \cup\{\infty\}$: there is a neigh borhood V of z such that $\left.G\right|_{V}$ is a normal family with respect to the spherical metric\}.

Definition. A polynomial semigroup is near$l y$ abelian if there is a compact family Φ of Möbius transformations with the following properties;
(i) $\phi(N(G))=N(G)$ for all $\phi \in \Phi$, and
(ii) for all $f, g \in G$, there is a $\phi \in \Phi$ such that $f \circ g=\phi \circ g \circ f$.

Next we state our main theorem.
Theorem 1. If G is a nearly abelian polynomial semigroup and G contains some polynomials of degree at least two, then there is a neighborhood of ∞ on which G is analytically conjugate to a subsemigroup of $\left\langle z \mapsto a z^{n}:\right| a|=1, n=1,2,3, \ldots\rangle$.

Remark. The condition that " G contains some polynomials of degree at least two" cannot be removed. In fact, there are counterexamples to the assertion without it. A simple example is $\langle z \mapsto 2 z\rangle$.

We need two lemmas to prove Theorem 1. The first one is a consequence of Theorem 4.1 in [5].

Lemma 2. Let G be a nearly abelian polynomial semigroup. Then for each $g \in G$ of degree at least two, we have $N(G)=N(\langle g\rangle)$.

The next lemma is connected with the Böttcher function. (see [3] for the proof).

Lemma 3. Suppose that f is a polynomial of degree n which is at least two. Then there exist a neighborhood V of ∞ and an injective holomorphic $\operatorname{map} \varphi: V \mapsto \boldsymbol{C} \cup\{\infty\}$ such that
(i) $\varphi(\infty)=\infty$,
(ii) $\lim _{z \rightarrow \infty} \frac{\varphi(x)}{z}=1$,
(iii) $\varphi \circ f \circ \varphi^{-1}(\zeta)=a \zeta^{n}$, where $\zeta \in \varphi(V)$ and $a=\lim _{z \rightarrow \infty} \frac{f(z)}{z^{n}}$, and
(iv) if Ω is the connected component of $N(\langle f\rangle)$ including ∞, then the map $z \mapsto$ $\log |\varphi(z)|$ coincides with the Green function of Ω having the pole at ∞.
Proof of Theorem 1. Let g be an element of G with degree n which is at least two. Then there is a Möbius transformation τ with the property that

$$
\lim _{z \rightarrow \infty} \frac{\tau \circ g \circ \tau^{-1}(z)}{z^{n}}=1
$$

It is sufficient to prove this theorem that we prove the similar assertion to $\tau \circ G \circ \tau^{-1}$. Therefore we may suppose that there is a $g \in G$ such that

$$
\lim _{z \rightarrow \infty} \frac{g(z)}{z^{n}}=1
$$

Using Lemma 3 , we obtain a neighborhood V of ∞ and injective holomorphic map $\varphi_{g}: V \rightarrow \boldsymbol{C}$ $U\{\infty\}$ such that

$$
\begin{gathered}
\varphi_{g}(\infty)=\infty, \\
\lim _{z \rightarrow \infty} \frac{\varphi_{g}(z)}{z}=1,
\end{gathered}
$$

and

$$
\varphi_{g} \circ g \circ \varphi_{g}^{-1}(\zeta)=\zeta^{n}
$$

where $\zeta \in \varphi_{g}(V)$.

Suppose that f is another element of G of degree m which is at least two. Again using Lemma 3 and taking a smaller V if necessary, we can find a map $\varphi_{f}: V \rightarrow \boldsymbol{C} \cup\{\infty\}$ such that

$$
\begin{gathered}
\varphi_{f}(\infty)=\infty \\
\lim _{z \rightarrow \infty} \frac{\varphi_{f}(z)}{z}=1
\end{gathered}
$$

and

$$
\varphi_{f} \circ f \circ \varphi_{f}^{-1}(\zeta)=a \zeta^{m}
$$

where

$$
a=\lim _{z \rightarrow \infty} \frac{f(z)}{z^{m}}
$$

It follows from Lemma 2 that $N(\langle f\rangle)=N(\langle g\rangle)$ and hence the components of $N(\langle f\rangle)$ and $N(\langle g\rangle)$ containing ∞ also coincide. From the uniqueness of the Green function.

$$
\log \left|\varphi_{g}(z)\right|=\log \left|\varphi_{f}(z)\right|
$$

Here $\varphi_{g} / \varphi_{f}$ is a meromorphic function and $\left|\varphi_{g} / \varphi_{f}\right|=1$. So the maximum principle says that $\varphi_{g} / \varphi_{f}$ is a constant function. The condition

$$
\lim _{z \rightarrow \infty} \frac{\varphi_{g}(z)}{z}=\lim _{z \rightarrow \infty} \frac{\varphi_{f}(z)}{z}=1
$$

gives $\varphi_{f}=\varphi_{g}$.
Let Φ be the set of the Möbius transformations given in the definition of a nearly abelian semigroup, then there exists a $\sigma \in \Phi$ such that $f \circ g=\sigma \circ g \circ f$ and $\sigma(N(G))=N(G)$. Because $N(G)$ contains ∞,

$$
\left|\lim _{z \rightarrow \infty} \frac{\sigma(z)}{z}\right|=1
$$

And from $f \circ g=\sigma \circ g \circ f$, we get $|a|=\left|a^{n}\right|$, so $|a|=1$.

After all, any $f \in G$ of degree at least two is conjugate to an element of $\left\langle z \mapsto a z^{n}:\right| a \mid=1$, $n=1,2,3, \ldots\rangle$ near ∞ by a function $\varphi=\varphi_{f}=$ φ_{g}.

Finally, we shall consider the remaining case when $f \in G$ is a polynomial of degree one. From the same reason as is in the preceding case,

$$
\left|\lim _{z \rightarrow \infty} \frac{f(z)}{z}\right|=1
$$

Generally, we have $f(N(G)) \subseteq N(G)$. So if we denote by Ω the component of $N(G)$ containing ∞, then $f(\Omega) \subseteq \Omega$. From the Schwarz lemma, we have gotten $f(\Omega)=\Omega$. And it implies

$$
\log |\varphi(f(z))|=\log |\varphi(z)|
$$

which is the invariance of the Green function. From this equation we can conclude that $\varphi \circ f \circ$
$\varphi^{-1}(z)=a z$ where $a=\lim _{z \rightarrow \infty} \frac{f(z)}{z}$.

References

[1] A. Beardon: Symmetries of Julia sets. Bull. London Math. Soc., 22, 576-582 (1990).
[2] A. Beardon: Polynomials with indentical Julia set. Complex Variables Theory Appl., 17, 195-205 (1992).
[3] A. Beardon: Iteration of Rational Functions. Springer, New York (1992).
[4] T. Harada: Dynamics of Endomorphism Semigroups of Riemann Surfaces and Teichmüller spaces. Master Thesis (1995)(in Japanese).
[5] A. Hinkkanen and G. J. Martin: The Dynamics of Semigroups of Rasional Functions I . Proc. London Math. Soc., 73, (3), 358-384 (1996).

