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Abstract:
tions {f,; h € I'} is given.

1. Notations and definitions. We denote by
D” the compactification of R", D" = R" U S*™*
and supply it with the wusual topology. The
sheaves @ and 2 on D" + {R" are defined as fol-
lows (cf. [3-6]). For any open set U < D" + iR",
O(U) consists of those elements of (U N C")
which satisfy | F(2) | < C, . exp(e|Rez|) uni-
formly for any open set V. C”, V.C U, and for
every € > 0. Hence, 0 |.» = O. The derived sheaf
#Hpn(0), denoted by 2, is called the sheaf of
Fourier hyperfunctions. It is a flabby sheaf on
D" ([4)).

Let I be a convex neighbourhood of 0 € R”
and U, = {(D"+iI) N {Imz; #0}},5=1,...,n
The family {D” + I, U;;5=1,..., n} gives a re-
lative Leray covering for the pair {D" 4+ iI, (D"
+ iI) \ D"} relative to the sheaf &. Thus 2(D") =
O(D"+4I) # D" /27, 6((D"+4I) #,D"), where
DO'+iD#D"=UN...NU, and (D"+il) #,D"
=un..NnU_NU,,N...N U,

We shall use the notation A for the set of
n-vectors with entry {— 1,1}; the corresponding
open orthants in R” will be denoted by I, o € A.

A global section f = [F1 € 2(D") is defined
by Fe€6(D"+il)#D");F=(F,), where
F,€ 0(D" +il,), D" + il, is an infinitesimal
wedge of type R" + iI,0, 0 € A.

Recall the topological structure of 2(D”). Let f
= [F]l € 2(D"), F € 0(D" + iI) # D"). Then, by
Py (F) = sup,cpn,ic| F(2)exp(— e|Rez|) |, e >0,
K © I\ {0}, is defined the family of semi-norms;
O((D" + ¢I) # D") is a Fréchet and Montel space,
as well as 2(D").

Let f = [F] € 2(D"). Then we associate to
f, f@ = X,., sgno F,(x + il,0), F, € 0(D"
+ iI,) (cf. [3], Theorem 8.5.3 and Definition
8.3.1).

The Fourier transform on 2(D") is defined
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A structural characterization of a convergent family of Fourier hyperfunc-

by the use of functions X, = X,, - - - X,,, Where
o, =1, k=1, .,n, 0= (o, . ..,0q,)
and x,(D=¢/7A+e), x_,(=1/A+¢",
te€ R Let ul = >2,., U, (x+ 1,00 =2>,,
2seaxzU,) (x + iI,0), where x;U, € 0(D" +
i), 0, 6 € A and decreases exponentially along
the real axis outside the closed J-th orthant.

The Fourier transform of # is defined by

Fu) = 2 2 Fx:U,) (@ — il30)

oceA GeA

== 2 [ U @dr, vt e 1,

oeA oeA YImz=y
where F(x; U,) € 6(D" — il;) and F(x; U,
decreases exponentially along the real axis out-
side the closed o-orthant.

An infinite-order differential operator
J(D) = 2420 b.D* with limg_.. V[ b, [a! =0
is called a local operator.

2. Convergence in 2(D"). Let E be a
Fréchet space with an increasing family of semi-
norms {P;;i € N} and let F be a closed sub-
space of E. Denote by I an element of the quo-
tient space E/F defined by £ € E ; seminorms
which induce the topology in E/F are given by
p:(X) = inf,.. P(x + y), i € N. In the sequel I
will be a convex cone in R”.

Proposition 1. A necessary and sufficient con-
dition that a family {Z,;h € I'} converges to & in
E/F as |h|— o, h €T, is the existence of a
family {u, € E ;h € I'} such that u, belongs to
the class &, for every h € I' and u, converges to u
in E as |h||— oo, h € I, where u belongs to the
class I.

Proof. The sufficiency is trivial. Suppose
that &£, converges to £ in E/F as | Z||— oo, h
I Then for every m € N there exists £, > 0
such that p,(Z, — &) = inf,c.x P,(x, — 2+ )
<1/m,|hl|=t,hel;{t,;me N is a
monotone increasing sequence which tends to in-
finity as m— o0 . We construct a looked-for
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family {u,; h € I'} as follows. For every h € I',
|7l > tm, there exists ¥, , € F such that
P, (x,—x+y,,) <2/mylnl=t,,heET

Then u, = x, +y,, for those h &I for
which ¢, < | 2| < t,,,, m € N. The verification
of the assertion simply follows.

This proposition implies the next one.

Proposition 2. Let I be a convex neighbour-
hood of 0 € R" and I,=INT, c € A. Let {f,; h
€I} be a family in 2(D™) such that f, = 2,4
G,.(x + il,0), where G,, € O(D" +il), h €
I, o€ A

A mecessary and sufficient condition that f,
converges in 2(D") to f = X, G,(x + iI,0) as
[2]|— oo, h € I is the existence of families {F,,;h
erycod"+ i), 0 € A, such that

1) F,= (F,,) belongs to the same class as
G,= (G,,), hET,

2) For every 0 € A, F, , converges to F, in
6(D" +il,) asl|hll—= o, h e,

where F = (F,) belongs to the same class as
G = (G,.

One can find in [3, p. 408] the sufficiency of
the given condition.

Theorem 1. Let {f,; R €E '} be a family in
2(D") of the form f, = [G,], G, € 6((D" +il) # D"),
h € I, such that f, converges to f in 2(D") as | k|
— oo, hel.

Then for every sequence {h,;v € N} in I,
such that || h, | — o0 as y— oo, there exists an
elliptic local operator J(D) and a sequence of func-
tions {q,,y ;h, € I', v € N} with the properties :

a) For every € > 0 there exists C,, . > 0, v
€ N such that | q,,y(x) | < Ci,c expelz], x €
R",vEN (s, is slowly increasing). Thus g, de-
fines an element of 2(D™), denoted by 4q,, for every
h,€T.

b) g, converges in E(R™) toqas|h,|— o,
h, €I, v— 00, where q is also slowly increasing
and defines £q € 2(D"). Moreover, for every .

sup | g, (@) — @) [ e

reR"

o fi,=J]D)q,,h, €', vEN and f=
J(D)4q.

(Note, q in b) and c¢) is the same for every sequ-
ence {q,,y;h,, eI, veE N)).

Proof. We will use some ideas of Kaneko’s
papers [1] and [2]. Proposition 2 implies that there
exists a family {F ,;hET C6WD"+il)# D"
such that f, = [F,], f = [Fland F, converges to

——»O, Y — 00,
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Fin 6((D"+ i) # D).
Let f, = Zpeq Fyolx + il,0), where F,, =
sgnoF, .. Its Fourier transform is defined by

Ff,= T 3 F(F,,) € — il0)
= ZA ~ZA Rh’g’a(g - lra-o)y

where R, ,5 € O0(D" — il;) and R, decreases
exponentially along the real axis outside the
closed o-th orthant for every & € I'. By Proposi-
tion 2, R, ;5 converges in 0(D" — il;) to R,; =
F(xsF,) as |h|— o, h T

Let {h,;v € N} be a sequence in I" such
that || h, |— 0 as v— . Since G(D" — il;) is
a Montel space, the set A,z = {R,5, R, ,3;h, €
I',v € N}is a compact set in (D" — il;) for
every o and 4.

First we shall prove the existence of a sequ-
ence {¢,;j € N} of positive monotone increasing
functions defined on R, U {0} and a sequence of
positive constants {C;;j € N} which do not de-
pend on 0, 6 € A and h, € I', v € N and:

(1) a) 9,00 =1, ¢;(r) > ©asr— o, jEN;

b) IR, (0 | < Cexp( 170, CD,

(€ R" + iK;,,
where {K; ;;7 € N} is a sequence of compact
sets which exhausts — [; from the inside.

Let s € N. Put

B;(») = sup sup sup | V(O |,

0.0 |¢|=7,CeR" +iKg,j VEAgT

r
o;(n = Bm, r> 0.

The function B;(»), r € R,, is well defined be-
cause the sets A, and {{ € R” + iK;, ;| | =7
are compact and o, ¢ belong to the finite set.
Moreover, for every & > 0 there exists C;, > 0
such that B,(») < C, e, 7€ R,,j € N. Also,
¢;(x) >0 and ¢,(r) — > as Let
{,() = max(1, inf,~ ,¢9,;(s)) ;7€ N}. We can
replace the sequence in (1) by a unique function
$, with the property Cr'”? < ¢(»), as it is done
in [1]. Now,
2) R0 < Clexp( /o0 LD,

{€ R"+iK;;,, jEN.
Note that ¢ does not depend on g, € A, h, €
I'veEe N and j € N. There exists an elliptic
local operator J(D) whose Fourier transform
J (O satisfies the estimate el

® Q1> cen(giy) Inl <Ll 41 e

and J(O is an

y— OO

entire function of infra-
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exponential growth in {. (Lemma 1.2 in [2]).

The functions R, ¢5(0 /T30, L€ R —
iz, hy€I',ve N, o 6 €A, are holomorphic
and (2) and (3) imply
(4) | R,,0,5(0 /T (C)I Cjexp(— V[ CI]),

e R"+ 1K, J € N.

Letn € — Iz h, €I, v € N. Define

1 iz 2
" j;m(=n e R0 /T (D dE,

By the definition of the Fourier transform, it
follows that H,,3 € 0(D" + iI,) and decreases
exponentially along the real axis outside the
closed cone Iy.

Let ne€K;,Ilnl<1,herl,
p € N, Then (4) and (5) imply

| 82,5 | < Ce™ [ e e " ag,
Rn
z€ R" +1iI,.

This implies that for every h, € I', v € N,
o,6€A and pEN,, H,,(m”(z) z€ R" +il,
is continuable to a continuous function Hh ) (@)
up to the real axis. Moreover, this functlon satis-
fies | H, ,5@ | < Cyexp(z|/f),j €N (it is
slowly 1ncreasmg) and belongs to §(R"). By the
properties of R, ,5(0) it follows that for h, € I’

th,,’a(x) - Ha,ﬁ(x) = (27[);1 jl‘mC=7)

¢ R, /T Q) dE as | h, | = o0, y— oo,
in (R") and H,;(x) is also slowly increasing.
Also, for every €

sup || H,, ,5(x) — Hy5(2) [ e™*' — 0, y— oo,
xeR”

By Carleman’s Lemma ([3] p. 395) H, ,5(r+

il,0) and H,z(x + i[,0) define Fourier hyper-

functions ¢H, ,5(x) and ZH,;(x), respectively.
Hence

') = = H, ,3(x+ il,0)

oeA oeA
=3F, ,x+il,0) =f, (@, h €T,
o

J3D) = 3 H,;(x+ il,0)

geA oA

=2 F,(x+il[,0) = f(x).

vy € N,
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Put
2 2 H, ;@

=q, @, h €T
oA el
and Z Z H,;(x)

Since H,, , = (sgné H, ,3) converges in
O((D" + iU) D" ) to H, = (sgnaHM) as || a, ||
— oo p, eI, v— o for every 0 € A, Proposi-
tion 2 and the continuity of a local operator im-
ply S, =T (D)(ﬁqh) h,€Tl',vE N and f=
TA(D) 4.

Properties of g,, and ¢ follow from the cor-
responding properties of H, ,5 and H,;.

Remark. As we mentioned at the beginning
of the proof of Theorem 1, we have that

F, converges to F, | h|— oo,

he€in 0O((D" + i) #D ).
If we assume that there exists 4, and a closed
cone I'} € I' such that the mapping
N An;|h| = h)—6(D"+iI) # D", h— F,,
is continuous, then A,3 = {R,5, R,,3;h € I,
| 7] = ho is a compact set. In this case we have
that there exists a unique elliptic local operator
J(D) and a family of functions {g,;h € I, ||
> h,t with the properties given in a), b), and c)
forhe I, |n| = n,

= q(x).
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