On an Infinite Family of Elliptic Curves with Rank ≥ 14 over Q

By Shoichi KIHARA
Department of Neuropsychiatry School of Medicine Tokushima University (Communicated by Shokichi Iyanaga, M. J. A., Feb. 12, 1997)

In [2], Nagao constructed an example \mathscr{E} of elliptic curve over $\boldsymbol{Q}(t)$ with rank ≥ 13. In this paper, we show in utilizing \mathscr{E} and a method introduced in our previous paper [3] that there are infinitely many elliptic curves with rank ≥ 14 over \boldsymbol{Q}.

The curve given in [2] was

$\mathscr{E}: y^{2}=\left(9 s^{2}+211950\right) x^{4}+\left(-2700 s^{2}-\right.$

$$
\begin{aligned}
& 63901710) x^{3}+\left(-18 s^{4}+396150 s^{2}+\right. \\
& 6706476489) x^{2}+\left(2700 s^{4}-\right. \\
& \left.29575350 s^{2}-284435346600\right) x+ \\
& 9 s^{6}-159200 s^{4}+891699592 s^{2}+ \\
& 4156297690000
\end{aligned}
$$

where $s=\left(-t^{2}+23550\right) /(2 t)$. As was shown in [2], there are following 13 points on \mathscr{E}.
$P_{1}=\left(s+148,662 s^{2}+66873 s+1868944\right)$,
$P_{2}=\left(s+116,-554 s^{2}-39687 s-191632\right)$,
$P_{3}=\left(s+104,-526 s^{2}-28497 s+163372\right)$,
$P_{4}=\left(s+57,508 s^{2}-19332 s-368809\right)$,
$P_{5}=\left(s+25,580 s^{2}-49116 s+566825\right)$,
$P_{6}=\left(s,-670 s^{2}+69759 s-2038700\right)$,
$P_{7}=\left(-s+148,-662 s^{2}+66873 s-1868944\right)$,
$P_{8}=\left(-s+116,554 s^{2}-39687 s+191632\right)$,
$P_{9}=\left(-s+104,526 s^{2}-28497 s-163372\right)$,
$P_{10}=\left(-s+57,-508 s^{2}-19332 s+368809\right)$, $P_{11}=\left(-s+25,-580 s^{2}-49116 s-566825\right)$, $P_{12}=\left(-s, 670 s^{2}+69759 s+2038700\right)$, $P_{13}=\left((s+703) / 15,\left(-224 s^{3}-844 s^{2}+\right.\right.$ $900484 s+2161725) / 75)$.
Next, let us consider the following elliptic curve:
$C: q^{2}=p(p-13728)(p+80472)$.
($-27456,-7742592$) is on C, and it is easy to see that this point is of infinite order in the Mordell-Weil group of C, so that C has positive rank.

Let $\boldsymbol{Q}(\boldsymbol{C})$ be the function field of \boldsymbol{C}. Now we consider \mathscr{E} over $\boldsymbol{Q}(C)$, like in [3], by specializing
$t=q /(2 p)$.
Then we have the point $P_{14}=\left(x_{14}, y_{14}\right)$ on \mathscr{E}, where
$x_{14}=\left(-1104719616-p^{2}+708 q\right) /(4 q)$
$y_{14}=(240419869705111928832-$
$12282065003400192 p+1177306772832 p^{2}+$ $11117812 p^{3}+197 p^{4}-108850233203712 q-$ $\left.98532 p^{2} q\right) /\left(4 q^{2}\right)$.
Theorem 1. P_{1}, \ldots, P_{14} are independent points.

Proof. This is shown by specializing (p, q) $=(-27456,-7742592)$. Let R_{1}, \ldots, R_{14} be the rational points obtained from P_{1}, \ldots, P_{14} by the above specialization. By using calculation system PARI, we see that the determinant of the matrix $\left(\left\langle R_{i}, R_{j}\right\rangle\right)(1 \leq i, j \leq 14)$ associated to the canonical height is 2344685535688581.87 . Since this determinant is non-zero, we see that R_{1}, \ldots, R_{14} are independent points.

So we see that P_{1}, \ldots, P_{14} are independent.
Q.E.D.

Now by the theorem 20.3 in [1], specializing (p, q) to elements of the Mordell-Weil group of C, we have

Theorem 2. There are infinitely many elliptic curves over \boldsymbol{Q} with rank ≥ 14.

References

[1] J. H. Silverman: The arithmetic of elliptic curves. Graduate Texts in Math., vol. 106, SpringerVerlag, New York (1986).
[2] K. Nagao: An example of elliptic curve over $\boldsymbol{Q}(T)$ with rank ≥ 13. Proc. Japan Acad., 70A, 152-153 (1994).
[3] S. Kihara: On the rank of the elliptic curve $y^{2}=$ $x^{3}+k$. II. Proc. Japan Acad., 72A, 228-229 (1996).

