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1. Introduction. Algebraic varieties in- what general result of [4]. When G itself is sim-
cluding algebraic groups are assumed to be de- ple, the result similar to this is shown by Popov
fined over the complex number field C. Let G al- [6] and O. M. Adamovich [1], and, moreover, col-
ways stand for a reductive algebraic group. An ree representations of G are determined by [6]
algebraic action of G on an affine variety X and G. W. Schwarz [9].
(abbr. (X, G)) is said to be cofree (resp. The purpose of this paper is to explain the
equidimensional), if the coordinate ring (X) of summary of our results concerning Theorem 1.
X is (X)a-free (resp. the quotient map X--* 2. Preliminaries. The L-module (V, G
X//G to the algebraic quotient X//G Specm extended by a morphism p" L---* G is donoted to
( (X)) is equidimensional). For any G, we de- V. In the case that G G G, any repre-
note by G’ the commutator subgroup of G and sentation 6 of the component G may be identi-

use any of the notations p, (p, G) or (V, G) to fled with t6_.a. For a representation q of G and
denote a finite-dimensional linear representation a non-negative integer m, mp denotes the direct

p" G’-* GL(V) over C. sum of m copies of p and p* denotes the dual of
Definition 1. (V, G ) is defined to be re- p. Especially if G is connected, for irreducible

latively stable, if the natural action of G on V//G and , p and (i, j N) denote, respec-
is stable (i.e., V//G" contains a non-empty open tively, the irreducible component of heighest

set consisting of closed G-orbits). weight in Sym () and in Sym () Sym().
Difinition 2. (V, G) is said to be relatively For any simple, connected and simply-connected

quasi-stable, if there is a relatively stable G-sub- algebraic group of rank r, let 1,. cr denote
module U of V such that the inclusion U --. V its basic representations whose orderings are the
induces U//G V//G. same as those in [10].

As a partial affirmative answer to the con- Definition 3. (V, G) is defined to be re-

jecture brought up by V. L. Popov [6] and [7] and latively equidimensional, if the action (V//G’,
by V. G. Kac [2] on equidimensional representa- G) is equidimensional.
tions, we obtain the following" Definition 4. (V, G is defined to be re-

Theorem 1. Suppose that G is a connected re- latively irredundant along trivial parts, if (V//G’,
ductive algebraic group whose commutator subgroup G) is non-trivial and (V {0} or) Girl/V, is

is a simple algebraic group. If a finite-dimensional never equal to the inner direct product
linear representation (V, G) is equidimensional and
relatively quasi-stable, then it is coffee, for any non-zero subspace U of V a’.

In the case that G’ is non-orthogonal sym- Let E(G)denote the rational linear charac-
plectic, it has already been obtained as a some- ter group of G. A sequence (El,..., Z,,) in the

rational character group 3 (G)is said to be
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simply-connected group G’ and a torus T and
that the ineffective part of T on V is finite.

(l) Suppose that (V, G)la, contains an irre-

ducible representation of G’ with finite principal
subgroups. Then (V, G) is relatively stable, re-

latively equidimensional and relatively irredun-
dant along trivial parts if and only if it can be
identified with

( : A C*)qzo Z
for an m N and a UPR sequence 0 1"
Xm) in (C*m). The only if part of this assertion
is derived from Lemma 1.5 of [4].

(2) Suppose that (V, G)]6, contains the ad-
joint representation (Ad, G’). Then (V, G) is re-
latively stable, relatively equidimensional and re-

latively irredundant along trivial parts if and
only if, up to an automorphism, it can be identi-
fied with one of the following representations;

(Ad X X-, Ar C*)
for a nontrivial X (C*)

(Ad Xo X
r+l

for an m e N and a UPR sequence (Xo X1,

z) in (*)
(Adx Adx -, A C*)

for a nontrivial X (C*)
(AdXo 1X X, A x C*e)

for X (C*) such that XoXIXe 1 and
rk ( Xo, X, X 2; or with

(AdXo lX Xe X, A C*m)
2

for a UPI sequence (Xo, XoX1, X,. Xm) in
(C’m). The only if part of this assertion in the

case where rkssG 2 is derived from Lemma 1.4
and Lemma 1.5 of [4].

3. Classifications. In Tables and iI, let
H be a simple, connected and simply-connected
group, W a non-zero representation of H and m,
n nonnegative integers.

Theorem 2. (1) Suppose that G" is a simple
algebraic group of one of the following types Br
(r 2), Dr (r 4), Gz, F, and Er (y 6, 7, 8).
If (V, G) is a relatively equidimensional, relatively
stable and relatively irredundant along trivial parts
representation, then, for a covering morphism
H G’, the representation ((W V" , H) is iso-

morphic to one of (W, H)’s listed in Table I.
(2) For any nontrivial (W, H) listed in Table

L there is a relatively equidimensional, relatively
stable and relatively irredundant along trivial parts
representation ( V G) such that G
V’, G’) is isomorphic to (W,

Table

H
B rnq) @ n; m 1, 2, n <- 2
B rn; 2 Nm <_ 4

Ba rnq) @ nq)a; m, n <-- 2
B4 mq)l @ q)4; m _< 1
B, 2q)

4

B mq) @ q; m <_ 1

Br (r _> 4) rnq m _< 2

D4 mqh na; m g 3, n 1, 2
D4 m @ q) @ 4; m <_ 3

D m4; m 1, 2

D 2q)
4

D q)l @ q)4 @q)
D rnq)l@ ; m <_ 2

D rnq) @ ; m <_ 1
D(r-> 4) mq); m<_2

Ge rn; m <_ 2

F4 q).
E m @ q); m <_ 1

E q)

For G in Theorem 2, we can explicitly deter-
mine relatively stable and relatively equidi-
mensional representations.

Remark 1. In the case where a simple G’ is
of type Cr (r 2 3 ), a classification similar to
Theorem 2 can be derived from [4].

Theorem 3. Suppose that G" is a simple

algebraic group of type Ar. If (V, G )is an

equidimensional, relatively stable and relatively irre-

dundant along trivial parts representation, then, for
a covering morphism 9: H G’, the representation

G"( ( V/ V ) , H) is isomorphic to a subrepresentation

of one of (W, H)’s listed in Table II.
Since the algebraic torus G/G" acts on

V//G’, the result in [5] plays an important role in
the proofs of Theorem 2 and Theorem 3.

Remark 2. Some (W, H)’s listed in those
tables are not cofree and, what is worse, are not
coregular (cf. [8] and [9]).

Proposition 1 (cf. [9] and [12]). Suppose that
U is a G-submodule of (V, G) such that the inclu-

sion U - V induces U//G - V//G. Then (V,
G) is equidimensional (resp. cofree) if and only if so

is (U, G). If (V, G) is (relatively)equidimension-
al, then so is (W, G) for any G-submodule W.

For an algebraic action (X, G) on an affine
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Table

H= Ar W
r 1 ()1 O ()1
r 1 4
r _> 1 21 O
r_> 1 20
r 2
r 23 1@ @

2

r 22 @ @ max{Jr/2],
r 23 @ ([(r + 1)/2]
r odd 2 5
rodd 2 3 122
r odd 2 3 2 @2
reven 2 4 2@2@
reven 2 4 2@]
r odd 2 5 21 @
rodd 25 @@@
r 4 2 @
r= 5 3
r 23 41 @
r27 31@@(r--
r--4 31@@3
r-- 5, 6 3@@4
r=3 2@@3
r 5 @
r 5 @ Ca
r 5 3 @ a
r= 5 2@a@2
r 6 2 @ a @
r- 6 @ a @ 2
r 6 Oa 30
r=7
r- 7 O O
r 4 O rO
r 2 (r + 2) @
r 2 r @r
r 2 1 @ @

variety X, we denote by 7 (X) st(x’a)
the sub-

algebra of (X) generated by the union of mod-
ules (X) x’s of invariants in (X) relative to Z
for all Z { (G) [ (X). N O (X) a =/:

{0}}, which is denoted to 3x(G). Then, by [5], we
have (X)st(x’a) (X//( Nxx(aKerz)).

Proposition 2. (Compare [3]). Suppose that
the canonical morphism V//(N zv(a)Kerz )--
V//G is equidimensional. If dim ((V/V a" )//G )
<- 2, then (V, G) is coregular.

Our main result, Theorem 1, is an (indirect)

consequence of the results in this section, [8], [9]
and further computations.

We have the following criterion on quasi-
stability of algebraic actions’

Proposition 3. For (V, G ), it is relatively
quasi-stable if and only if there is a G-submodule
U of V such that the inclusion U V induces
(U)" - (V)sv,.

Example 2. In general, by Proposition 3, we
see that (V, G) is relatively quasi-stable, if
dim((V

z(a) ( )//G’) > dirn((VZ(V))//G’),
for any irreducible component (, G)of (V/
Vz(a), G). For example, we suppose that the
commutator subgroup G’ is a simple algebraic
group of one of the following types" Br (r >_ 3),
D4, Dr(r-> 6 ), G2, F4, and Er(r= 6, 7, 8 ).
Then, since the above inequality always holds, all
representations of G are relatively quasi-stable.
Consequently, in this case, all equidimensional
representations of G are coffee.

Remark 3. Suppose that rkssG 1. Equidi-
mensional representations of G are cofree,
although it is not required that they are relative-

ly quasi-stable.
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