An Extension of Sturm's Theorem to Two Dimensions

By Tomokatsu SAITO

Department of Mathematics, Sophia University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1997)

1. Introduction and notation. Let $f(x, y) \in \mathbf{R}[x, y]$ be a square free polynomial with real coefficients, namely f(x, y) is decomposed into the irreducible factors whose multiplicities are only one. Let C be the set of points $(x, y) \in \mathbf{R}^2$ such that f(x, y) = 0. Until now, only the following primitive method has been used to draw the curve C by computer, within a given rectangle R. We decompose R into many small rectangles D and obtain $C \cap R$ by gathering $C \cap D$. $C \cap D$ is found as follows.

Let *D* be the set $\{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}$, and put $P_1 = (a, c), P_2 = (b, c), P_3 = (b, d)$ and $P_4 = (a, d)$. For example, if $f(P_1) f(P_2) < 0, f(P_3) f(P_4) < 0$ then we can find approximately a point P_5 in $C \cap \overline{P_1 P_2}$ and a point P_6 in $C \cap \overline{P_3 P_4}$. Then the line $\overline{P_5 P_6}$ can be considered approximately as $C \cap D$.

But the above method has next two problems.

(1) Even if $f(P_1) f(P_2) > 0$, it is possible that $C \cap \overline{P_1P_2} \neq \emptyset$.

(2) Even if $C \cap$ (the boundary of D) = \emptyset , it is possible that $C \cap$ (the interior of D) $\neq \emptyset$.

In this paper, we would like to propose a more reliable method which permit us to liberate from these incertainties.

Let ∂D be the boundary of D and D^i be the interior of D. Then $C \cap D$ is the direct union of $C \cap \partial D$ and $C \cap D^i$. The search for $C \cap D$ is made separately in two cases: the first case for $C \cap \partial D$ and the second case for $C \cap D^i$.

2. First case. This case can be treated as the equation f = 0 is restricted to a boundary line. Then we can use Sturm's theorem.

The Sturm sequence associated with the (one-variable) polynomial f(x) is a sequence of polynomials with $f_0(x)$, $f_1(x)$, ..., $f_k(x)$ defined by the following equations:

 $f_0(x) = f(x), f_1(x) = f'(x),$

$$f_i(x) = -$$
 remainder $(f_{i-2}(x), f_{i-1}(x))$

where remainder means the remainder from the

division of the former by the latter.

Let (a_1, \ldots, a_s) be a sequence of real numbers and (a'_1, \ldots, a'_t) be the subsequence of all non-zero numbers. Then $var(a_1, \ldots, a_s)$, the number of sign variations, is the number of i, $1 \le i < t$, such that $a'_i a_{i+1'} < 0$.

Theorem (Sturm). Let f(x) be a square free polynomial. When $gcd(f(x), f'(x)) = f_k(x)$, the number of real roots of f(x) in the interval a < x $\leq b$ is

$$var(f_0(a), f_1(a), \dots, f_k(a)) - var(f_0(b), f_1(b), \dots, f_k(b)).$$

Let *D* be the set $\{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}$. Using Sturm's theorem we can determine whether f(x, c) = 0 has a root in the interval [a, b] of not. Thus we can determine whether $C \cap \partial D \neq \emptyset$ or not, and if $C \cap \partial D \neq \emptyset$, find this set approximately in considering from divisions of ∂D .

3. Second case. When $C \cap \partial D = \emptyset$ then we can find $C \cap D^i$ in the following manner.

If $C \cap D^i \neq \emptyset$, then there is a point (x_0, y_0) such that $(x_0, y_0) \in C \cap D^i$, but if $(x, y) \in C \cap D^i$, then $y \leq y_0$. Such a point (x_0, y_0) will be called a maximal point (of $C \cap D^i$ with respect to y). We write $f_x(x, y) = \frac{\partial}{\partial x} f(x, y)$ and show $f_x(x_0, y_0) = 0$ for a maximal point (x_0, y_0) . If $f_x(x_0, y_0) \neq 0$ then using implicit function theorem, there exists a function g(y) near y_0 such that f(g(y), y) = 0 and $(x_0, y_0) = 0$.

As f(x, y) is square free, we have $gcd(f(x, y), f_x(x, y)) = 1$ in $\mathbf{R}(y)[x]$. Using Euclidean algorithm we can find $g(x, y), h(x, y) \in \mathbf{R}[x, y], F(y) \in \mathbf{R}[y]$ such that

(3) $f(x, y)g(x, y) + f_x(x, y)h(x, y) = F(y)$

If f(x, y) = 0, $f_x(x, y) = 0$, then F(y) must be zero. Using Sturm's theorem, we can count correctly the number of roots F(y) = 0 in the interval [c, d] and we can calculate approximately all roots in this interval. Therefore we can calculate

No. 1]

all points (x, y) such that f(x, y) = 0 and $f_x(x, y) = 0$. Thus we can decide whether $C \cap D^i \neq \emptyset$ or not. Even if the set $C \cap D^i$ is only one point, we can find the point by this method.

4. Determination of whether $C = \emptyset$ or not. Let $D_1 = \{(x, y) \mid | x | = 1 \text{ or } | y | = 1\}$ and $D_2 = \{(x, y) \mid | x | < 1 \text{ or } | y | < 1\}$. Using Sturm's theorem we can determine whether $D_1 \cap C = \emptyset$ or not. When $D_1 \cap C = \emptyset$ we can determine whether $D_2 \cap C = \emptyset$ or not by the above method. Let $D_3 = \{(x, y) \mid | x | > 1, | y | > 1\}$. We can determine whether $D_3 \cap C = \emptyset$ or not as follows.

When $f(x, y) = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{i,j} x^{i} y^{j}$ where for some $i, a_{i,n} \neq 0$ and for some $j, a_{m,j} \neq 0$, we put $g(x, y) = x^{m} y^{n} f(1/x, 1/y)$. Let $C' = \{(x, y) \mid g(x, y) = 0\}, D_{4} = \{(x, y) \mid \mid x \mid < 1, \mid y \mid < 1\}, D_{5} = \{(x, y) \in D_{4} \mid x = 0 \text{ or } y = 0\}. D_{5} \cap$ C' is a finite set of points $\{p_{1}, p_{2}, \ldots, p_{s}\}$ which can be computed by Sturm's theorem. Let D'_{i} be a small rectangle such that $p_{i} \in D'_{i} \subset D_{4}, p_{i} \notin D'_{j}(i \neq j)$. We can determine whether $D'_{i} \cap C' = \{p_{i}\}$ or not again by the above method. Therefore we can determine $D_{3} \cap C = \emptyset$ or not.

5. Use of Gröbner basis. Let $I = \langle f(x, y), f_x(x, y) \rangle$ be the ideal in $\mathbf{R}[x, y]$ generated by f(x, y) and $f_x(x, y)$. Using the Gröbner

algorithm we can find a Gröbner basis of I. A Gröbner basis of I is a basis of I which has the next desirable property. If $I \cap \mathbf{R}[y] = \langle F_0(y) \rangle$, then $F_0(y)$ is a member of Gröbner basis (Lemma 6.50 [3]). $F_0(y)$ is a devisor of F(y) in (3). Occasionally the degree of F(y) becomes very large even if the degree of $F_0(y)$ is small. As the set $S = \{y \mid f(x, y) = 0, f_x(x, y) = 0 \text{ for some } x\}$ is finite, we put $S = \{y_1, \ldots, y_n\}$. From (3) we have $F_0(y_i) = 0$. Let G(y) be $(y - y_1)(y - y_2) \cdots (y - y_n)$. From Hilbert Nulstellensatz, some power of G(y) must be in I. Therefore if $F_0(y_0) = 0$ then $y_0 = y_i$ for some $i(1 \le i \le n)$. As we have an algorithm to calculate $F_0(y)$, (cf. [3]), it is more advantegeous to use it.

References

- G. E. Collins and R. Loos: Real zeros of polynomials. Computer Algebra Symbolic and Algebraic Computation (eds. B. Buchberger, G.E. Collins, and R. Loos). Springer-Verlag, New York, pp. 83 -94 (1983).
- [2] D. E. Knuth: The Art of Computer Programming. second ed., vol. 2, Addison-Wesley (1981).
- [3] T. Becker and V. Weispfenning: Gröbner Basis. Springer-Verlag, New York (1993).