An Extension of Sturm's Theorem to Two Dimensions

By Tomokatsu SAITO
Department of Mathematics, Sophia University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 13, 1997)

1. Introduction and notation. Let $f(x, y)$ $\in \boldsymbol{R}[x, y]$ be a square free polynomial with real coefficients, namely $f(x, y)$ is decomposed into the irreducible factors whose multiplicities are only one. Let C be the set of points $(x, y) \in$ \boldsymbol{R}^{2} such that $f(x, y)=0$. Until now, only the following primitive method has been used to draw the curve C by computer, within a given rectangle R. We decompose R into many small rectangles D and obtain $C \cap R$ by gathering C $\cap D . C \cap D$ is found as follows.

Let D be the set $\left\{(x, y) \in \boldsymbol{R}^{2} \mid a \leq x \leq b\right.$, $c \leq y \leq d\}$, and put $P_{1}=(a, c), P_{2}=(b, c)$, $P_{3}=(b, d)$ and $P_{4}=(a, d)$. For example, if $f\left(P_{1}\right) f\left(P_{2}\right)<0, f\left(P_{3}\right) f\left(P_{4}\right)<0$ then we can find approximately a point P_{5} in $C \cap \overline{P_{1} P_{2}}$ and a point P_{6} in $C \cap \overline{P_{3} P_{4}}$. Then the line $\overline{P_{5} P_{6}}$ can be considered approximately as $C \cap D$.

But the above method has next two problems.
(1) Even if $f\left(P_{1}\right) f\left(P_{2}\right)>0$, it is possible that $C \cap \overline{P_{1} P_{2}} \neq \emptyset$.
(2) Even if $C \cap$ (the boundary of D) $=\emptyset$, it is possible that $C \cap$ (the interior of $D) \neq \emptyset$.

In this paper, we would like to propose a more reliable method which permit us to liberate from these incertainties.

Let ∂D be the boundary of D and D^{i} be the interior of D. Then $C \cap D$ is the direct union of $C \cap \partial D$ and $C \cap D^{i}$. The search for $C \cap D$ is made separately in two cases: the first case for C $\cap \partial D$ and the second case for $C \cap D^{i}$.
2. First case. This case can be treated as the equation $f=0$ is restricted to a boundary line. Then we can use Sturm's theorem.

The Sturm sequence associated with the (one-variable) polynomial $f(x)$ is a sequence of polynomials with $f_{0}(x), f_{1}(x), \ldots, f_{k}(x)$ defined by the following equations:

$$
\begin{gathered}
f_{0}(x)=f(x), f_{1}(x)=f^{\prime}(x) \\
f_{i}(x) \stackrel{\text { remainder }\left(f_{i-2}(x), f_{i-1}(x)\right)}{=}
\end{gathered}
$$

where remainder means the remainder from the
division of the former by the latter.
Let (a_{1}, \ldots, a_{s}) be a sequence of real numbers and ($a_{1}^{\prime}, \ldots, a_{t}^{\prime}$) be the subsequence of all non-zero numbers. Then $\operatorname{var}\left(a_{1}, \ldots, a_{s}\right)$, the number of sign variations, is the number of $i, 1$ $\leq i<t$, such that $a_{i}^{\prime} a_{i+1^{\prime}}<0$.

Theorem (Sturm). Let $f(x)$ be a square free polynomial. When $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=f_{k}(x)$, the number of real roots of $f(x)$ in the interval $a<x$ $\leq b$ is

$$
\begin{gathered}
\operatorname{var}\left(f_{0}(a), f_{1}(a), \cdots, f_{k}(a)\right)- \\
\operatorname{var}\left(f_{0}(b), f_{1}(b), \cdots, f_{k}(b)\right) .
\end{gathered}
$$

Let D be the set $\left\{(x, y) \in \boldsymbol{R}^{2} \mid a \leq x \leq b\right.$, $c \leq y \leq d\}$. Using Sturm's theorem we can determine whether $f(x, c)=0$ has a root in the interval $[a, b]$ of not. Thus we can determine whether $C \cap \partial D \neq \emptyset$ or not, and if $C \cap \partial D \neq \emptyset$, find this set approximately in considering from divisions of ∂D.
3. Second case. When $C \cap \partial D=\emptyset$ then we can find $C \cap D^{i}$ in the following manner.

If $C \cap D^{i} \neq \emptyset$, then there is a point $\left(x_{0}\right.$, y_{0}) such that $\left(x_{0}, y_{0}\right) \in C \cap D^{i}$, but if $(x, y) \in$ $C \cap D^{i}$, then $y \leq y_{0}$. Such a point $\left(x_{0}, y_{0}\right)$ will be called a maximal point (of $C \cap D^{i}$ with respect to y). We write $f_{x}(x, y)=\frac{\partial}{\partial x} f(x, y)$ and show $f_{x}\left(x_{0}, y_{0}\right)=0$ for a maximal point $\left(x_{0}, y_{0}\right)$. If $f_{x}\left(x_{0}, y_{0}\right) \neq 0$ then using implicit function theorem, there exists a function $g(y)$ near y_{0} such that $f(g(y), y)=0$ and $\left(x_{0}, y_{0}\right)$ cannot be a maximal point. Therefore we have $f_{x}\left(x_{0}, y_{0}\right)=0$.

As $f(x, y)$ is square free, we have $\operatorname{gcd}(f(x$, $\left.y), f_{x}(x, y)\right)=1$ in $\boldsymbol{R}(y)[x]$. Using Euclidean algorithm we can find $g(x, y), h(x, y) \in \boldsymbol{R}[x, y]$, $F(y) \in \boldsymbol{R}[y]$ such that
(3) $f(x, y) g(x, y)+f_{x}(x, y) h(x, y)=F(y)$

If $f(x, y)=0, f_{x}(x, y)=0$, then $F(y)$ must be zero. Using Sturm's theorem, we can count correctly the number of roots $F(y)=0$ in the interval $[c, d]$ and we can calculate approximately all roots in this interval. Therefore we can calculate
all points (x, y) such that $f(x, y)=0$ and $f_{x}(x$, $y)=0$. Thus we can decide whether $C \cap D^{i} \neq$ \emptyset or not. Even if the set $C \cap D^{i}$ is only one point, we can find the point by this method.
4. Determination of whether $C=\emptyset$ or not. Let $D_{1}=\{(x, y)| | x \mid=1$ or $|y|=1\}$ and D_{2} $=\{(x, y)| | x \mid<1$ or $|y|<1\}$. Using Sturm's theorem we can determine whether $D_{1} \cap C=\emptyset$ or not. When $D_{1} \cap C=\emptyset$ we can determine whether $D_{2} \cap C=\emptyset$ or not by the above method. Let $D_{3}=\{(x, y)| | x|>1,|y|>1\}$. We can determine whether $D_{3} \cap C=\emptyset$ or not as follows.

When $f(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n} a_{i, j} x^{i} y^{j} \quad$ where for some $i, a_{i, n} \neq 0$ and for some $j, a_{m, j} \neq 0$, we put $g(x, y)=x^{m} y^{n} f(1 / x, 1 / y)$. Let $C^{\prime}=\{(x$, y) $\mid g(x, y)=0\}, D_{4}=\{(x, y)| | x|<1,|y|<$ $1\}, D_{5}=\left\{(x, y) \in D_{4} \mid x=0\right.$ or $\left.y=0\right\} . D_{5} \cap$ C^{\prime} is a finite set of points $\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$ which can be computed by Sturm's theorem. Let D_{i}^{\prime} be a small rectangle such that $p_{i} \in D_{i}^{\prime} \subset D_{4}, p_{i} \notin D_{j}^{\prime}(i$ $\neq j)$. We can determine whether $D_{i}^{\prime} \cap C^{\prime}=$ $\left\{p_{i}\right\}$ or not again by the above method. Therefore we can determine $D_{3} \cap C=\emptyset$ or not.
5. Use of Gröbner basis. Let $I=<f(x$, $y), f_{x}(x, y)>$ be the ideal in $\boldsymbol{R}[x, y]$ generated by $f(x, y)$ and $f_{x}(x, y)$. Using the Gröbner
algorithm we can find a Gröbner basis of I. A Gröbner basis of I is a basis of I which has the next desirable property. If $I \cap \boldsymbol{R}[y]=\left\langle F_{0}(y)\right\rangle$, then $F_{0}(y)$ is a member of Gröbner basis (Lemma $6.50[3]) . F_{0}(y)$ is a devisor of $F(y)$ in (3). Occasionally the degree of $F(y)$ becomes very large even if the degree of $F_{0}(y)$ is small. As the set S $=\left\{y \mid f(x, y)=0, f_{x}(x, y)=0\right.$ for some $\left.x\right\}$ is finite, we put $S=\left\{y_{1}, \ldots, y_{n}\right\}$. From (3) we have $F_{0}\left(y_{i}\right)=0$. Let $G(y)$ be $\left(y-y_{1}\right)\left(y-y_{2}\right) \cdots(y$ $\left.-y_{n}\right)$. From Hilbert Nulstellensatz, some power of $G(y)$ must be in I. Therefore if $F_{0}\left(y_{0}\right)=0$ then $y_{0}=y_{i}$ for some $i(1 \leq i \leq n)$. As we have an algorithm to calculate $F_{0}(y)$, (cf. [3]), it is more advantegeous to use it.

References

[1] G. E. Collins and R. Loos: Real zeros of polynomials. Computer Algebra Symbolic and Algebraic Computation (eds. B. Buchberger, G.E. Collins, and R. Loos). Springer-Verlag, New York, pp. 83 -94 (1983).
[2] D. E. Knuth: The Art of Computer Programming. second ed., vol. 2, Addison-Wesley (1981).
[3] T. Becker and V. Weispfenning: Gröbner Basis. Springer-Verlag, New York (1993).

