On the Number of Asymptotic Points of Holomorphic Curves

By Nobushige TODA
Department of Mathematics, Nagoya Institute of Technology
(Communicated by Kiyosi Itô, M. J. A., Dec. 12, 1997)

1. Introduction. Let $f=\left[f_{1}, \ldots, f_{n+1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into the n dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation

$$
\left(f_{1}, \ldots, f_{n+1}\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}-\{\mathbf{O}\},
$$

where n is a positive integer.
We use the following notation:

$$
\|f(z)\|=\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n+1}(z)\right|^{2}\right)^{1 / 2}
$$

and for a point $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n+1}\right)$ in $\boldsymbol{C}^{n+1}-\{\mathbf{O}\}$

$$
\begin{aligned}
\|\boldsymbol{a}\| & =\left(\left|a_{1}\right|^{2}+\cdots+\left|a_{n+1}\right|^{2}\right)^{1 / 2}, \\
(\boldsymbol{a}, f) & =a_{1} f_{1}+\cdots+a_{n+1} f_{n+1}, \\
(\boldsymbol{a}, f(z)) & =a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z), \\
d(\boldsymbol{a}, f(z)) & =|(\boldsymbol{a}, f(z))| /(\|\boldsymbol{a}\|\|f(z)\|) .
\end{aligned}
$$

(On the distance " d ", see [7], p. 76, where $\|\|$ is used instead of d).

The characteristic function $T(r, f)$ of f is defined as follows (see [7]):

$$
\begin{gathered}
\begin{array}{c}
T(r, f)=\frac{1}{2 \pi} \\
\text { We note that } \\
\int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\| . \\
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=\infty
\end{array}
\end{gathered}
$$

since f is transcendental.
We put

$$
\begin{aligned}
\rho & =\underset{r \rightarrow \infty}{\lim \sup } \frac{\log T(r, f)}{\log r}, \\
\lambda & =\underset{r \rightarrow \infty}{\liminf } \frac{\log T(r, f)}{\log r}
\end{aligned}
$$

and we say that ρ is the order of f and λ the lower order of f.

Let

$$
V=\left\{\boldsymbol{a} \in \boldsymbol{C}^{n+1}:(\boldsymbol{a}, f)=0\right\}
$$

Then, V is a subspace of \boldsymbol{C}^{n+1} and $0 \leq \operatorname{dim} V$ $\leq n-1$. It is said that f is linearly nondegenerate when $\operatorname{dim} V=0$ and linearly degenerate otherwise.

For meromorphic functions in $|z|<\infty$ we shall use the standard notation and symbols of the Nevanlinna theory of meromorphic functions ([2]).

For $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-V$, we put

$$
N(r, \boldsymbol{a}, f)=N(r, 1 /(\boldsymbol{a}, f))
$$

and we denote the standard basis of \boldsymbol{C}^{n+1} by \boldsymbol{e}_{1},
$\boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n+1}$.
Let X be a subset of \boldsymbol{C}^{n+1}. Then, we say that X is in general position if the elements of X are linearly independent when $\# X \leq n$ or if any n +1 elements of X are linearly independent when $\# X \geq n+1$.

The purpose of this paper is to extend a famous result on the number of asymptotic values of meromorphic functions obtained by Ahlfors in [1] to holomorphic curves. By the way, the result in [1] was extended to algebroid functions by Lu Yinian in [5].
2. Definition and lemma. In this section, we first give a definition of asymptotic point to holomorphic curves. Let f be as in Section 1 .

Definition 1 (asymptotic point) (see Definition 3 in [6]). A point \boldsymbol{a} of $\boldsymbol{C}^{n+1}-V$ is an asymptotic point of f if and only if there exists a path Γ : $z=z(t)(0 \leq t<1)$ in $|z|<\infty$ satisfying the following conditions :
(i) $\lim _{t \rightarrow 1} z(t)=\infty$;
(ii) $\lim _{t \rightarrow 1} d(\boldsymbol{a}, f(z(t)))=0$.

Remark. This definition is a generalization of "asymptotic values" of meromorphic functions.

In fact, let $g=g_{2} / g_{1}$ be a transcendental meromorphic function in $|z|<\infty$, where g_{1} and g_{2} are entire functions without common zeros. Suppose that g has an asymptotic value c along a path L going from a finite point to ∞ and put \tilde{g} $=\left[g_{1}, g_{2}\right]$.
(i) When $c \neq \infty$, for $\boldsymbol{a}=(-c, 1) \in \boldsymbol{C}^{2}$,

$$
\begin{aligned}
d(\boldsymbol{a}, \tilde{g}(z)) & =\frac{\left|-c g_{1}(z)+g_{2}(z)\right|}{\|\boldsymbol{a}\|\left(\left|g_{1}(z)\right|^{2}+\left|g_{2}(z)\right|^{2}\right)^{1 / 2}} \\
& =\frac{|g(z)-c|}{\|\boldsymbol{a}\|\left(1+|g(z)|^{2}\right)^{1 / 2}} \rightarrow 0
\end{aligned}
$$

as $z \rightarrow \infty$ along L;
(ii) when $c=\infty$, for $\boldsymbol{e}_{1} \in \boldsymbol{C}^{2}$,

$$
\begin{aligned}
d\left(\boldsymbol{e}_{1}, \tilde{g}(z)\right) & =\frac{\left|g_{1}(z)\right|}{\left(\left|g_{1}(z)\right|^{2}+\left|g_{2}(z)\right|^{2}\right)^{1 / 2}} \\
& =\frac{1}{\left(1+|g(z)|^{2}\right)^{1 / 2}} \rightarrow 0
\end{aligned}
$$

as $z \rightarrow \infty$ along L.
Let \boldsymbol{a} be a point of $\boldsymbol{C}^{n+1}-V$ such that for any $x(0<x \leq 1)$ the set

$$
D(x ; \boldsymbol{a})=\{z: d(\boldsymbol{a}, f(z))<x\}
$$

which is open, contains at least one component not relatively compact. Then, let $\sigma(x ; \boldsymbol{a})$ be a function defined on the interval $(0,1]$ satisfying
(i) for each $x \in(0,1], \sigma(x ; \boldsymbol{a})$ is a component of $D(x ; \boldsymbol{a})$ which is not relatively compact ;
(ii) if $x_{1}<x_{2}$, then $\sigma\left(x_{1} ; \boldsymbol{a}\right) \subset \sigma\left(x_{2} ; \boldsymbol{a}\right)$.

Definition 2 (asymptotic spot). We call this $\sigma(x ; \boldsymbol{a})$ an asymptotic spot of f corresponding to \boldsymbol{a} (cf. Chapter 4 in [4]).

Considering the fact that if $\sigma_{1}(x ; \boldsymbol{a}) \cap \sigma_{2}$ $(x ; \boldsymbol{a}) \neq \phi$ for an $x \in(0,1]$, then, $\sigma_{1}(x ; \boldsymbol{a})=$ $\sigma_{2}(x ; \boldsymbol{a})$ since $\sigma_{1}(x ; \boldsymbol{a})$ and $\sigma_{2}(x ; \boldsymbol{a})$ are components of $D(x ; \boldsymbol{a})$, we give the following

Definition 3. Let $\sigma_{1}(x ; \boldsymbol{a})$ and $\sigma_{2}(x ;$ \boldsymbol{b}) be two asymptotic spots of f. Then, we say that they are distinct either if $\boldsymbol{a} \neq \boldsymbol{b}$ or if $\boldsymbol{a}=\boldsymbol{b}$ and there exists an $x \in(0,1]$ such that

$$
\sigma_{1}(x ; \boldsymbol{a}) \cap \sigma_{2}(x ; \boldsymbol{a})=\phi
$$

It is readily seen that \boldsymbol{a} is an asymptotic point of f if and only if there exists an asymptotic spot of f corresponding to \boldsymbol{a}.

Remark. There can exist more than one asymptotic spots corresponding to a single point. (see Example 1 given below.)

It is well known that a Picard exceptional value of transcendental meromorphic function in $|z|<\infty$ is an asymptotic value. As a generalization of this fact, we have

Proposition. Suppose that $(\boldsymbol{a}, f(z))$ has 0 as a Picard exceptional value. Then, \boldsymbol{a} is an asymptotic point of f (see [6], Theorem 1).

Unlike the case of meromorphic functions, we have no general results on the number of asymptotic points for holomorphic curves. To obtain a result on it, we classify the asymptotic spots of f as follows.

Definition 4. If an asymptotic spot $\sigma(x ; \boldsymbol{a})$ of f corresponding to \boldsymbol{a} satisfies the following condition :
(*) There exists a positive number $\delta(<$ $1)$ such that for any $x(0<x<\delta), \sigma(x ; \boldsymbol{a})$ does not contain any zeros of (a,f),
then we say that $\sigma(x ; \boldsymbol{a})$ is of first kind ; and of second kind otherwise.

Let S_{f} be a set of asymptotic spots of f and put

$$
A\left(S_{f}\right)=\left\{\boldsymbol{a}: \sigma(x ; \boldsymbol{a}) \in S_{f}\right\}
$$

Definition 5. We say that the elements of S_{f} are distinct in general position if they are distinct and if $A\left(S_{f}\right)$ is in general position.

Example 1. Let $h=\left[1, e^{z}, e^{2 z}, \ldots, e^{n z}\right]$. Then:
(a) When $\theta=0$,

$$
\begin{aligned}
& d\left(e_{1}, h\left(r e^{i \theta}\right)\right)= \\
& \left(1+e^{2 r \cos \theta}+\cdots+e^{2 n r \cos \theta}\right)^{1 / 2}
\end{aligned} 0(r \rightarrow \infty)
$$

and when $\theta=\pi$

$$
d\left(e_{1}, h\left(r e^{i \theta}\right)\right) \rightarrow 1(r \rightarrow \infty)
$$

(b) For $j=2, \ldots, n$, when $\theta=0$ or π

$$
d\left(e_{j}, h\left(r e^{i \theta}\right)\right)=
$$

$$
\frac{e^{(j-1) r \cos \theta}}{\left(1+e^{2 r \cos \theta}+\cdots+e^{2 n r \cos \theta}\right)^{1 / 2}} \rightarrow 0(r \rightarrow \infty)
$$

and when $\theta=\pi / 2$ or $3 \pi / 2$

$$
d\left(e_{j}, h\left(r e^{i \theta}\right)\right) \rightarrow 1 / \sqrt{n+1}(r \rightarrow \infty)
$$

(c) When $\theta=\pi$

$$
\begin{aligned}
& d\left(e_{n+1}, h\left(r e^{i \theta}\right)\right)= \\
& \frac{e^{n r \cos \theta}}{\left(1+e^{2 r \cos \theta}+\cdots+e^{2 n r \cos \theta}\right)^{1 / 2}} \rightarrow 0(r \rightarrow \infty)
\end{aligned}
$$

and when $\theta=0$

$$
d\left(e_{n+1}, h\left(r e^{i \theta}\right)\right) \rightarrow 1(r \rightarrow \infty)
$$

These facts show that $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}$ are asymptotic points of h, all asymptotic spots corresponding to them are of first kind and there are two asymptotic spots corresponding to \boldsymbol{e}_{j} (j $=2, \ldots, n$) when $n \geq 2$. In this case $\# S_{f}=2 n$ and $A\left(S_{f}\right)=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}\right\}$, which is in general position.

Lemma 1. Let $\sigma_{1}\left(x ; \boldsymbol{a}_{1}\right), \ldots, \sigma_{n+1}\left(x ; \boldsymbol{a}_{n+1}\right)$ be $n+1$ asymptotic spots of f distinct in general position. Then, there exists a positive number δ $\in(0,1)$ such that for any $x \in(0, \delta)$,

$$
\begin{equation*}
\bigcap_{j=1}^{n+1} \sigma_{j}\left(x, \boldsymbol{a}_{j}\right)=\phi \tag{1}
\end{equation*}
$$

Proof. Put $S_{f}=\left\{\sigma_{j}\left(x ; \boldsymbol{a}_{j}\right): j=1, \ldots\right.$, $n+1\}$.
(a) The case when $\# A\left(S_{f}\right)=n+1$. Then, by Definition $5, \boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ are in general position. For $j=1, \ldots, n+1$, put

$$
\boldsymbol{a}_{j}=\left(a_{j 1}, a_{j 2}, \ldots, a_{j n+1}\right)
$$

and

$$
g_{j}=\left(\boldsymbol{a}_{j}, f\right)=a_{j 1} f_{1}+\cdots+a_{j n+1} f_{n+1}
$$

then $\operatorname{det}\left(a_{i j}\right) \neq 0$ and f_{1}, \ldots, f_{n+1} can be represented as linear combinations of g_{1}, \ldots, g_{n+1} :

$$
f_{j}=b_{j 1} g_{1}+\cdots+b_{j n+1} g_{n+1}
$$

and we have for any z
(2)

$$
\|f(z)\| \leq \sqrt{n+1}\left(\max \left\|b_{j}\right\|\| \|(z) \|,\right.
$$

where $g=\left[g_{1}, \ldots, g_{n+1}\right]$ and $b_{j}^{1 \leq 5 \leq n+1}=\left(b_{j i}, \ldots, b_{j n+1}\right)$.
Now, suppose that (1) is false. Then for any $\delta \in(0,1)$, there is an $x \in(o, \delta)$ such that

$$
\Omega(x)=\cap_{j=1}^{n+1} \sigma_{j}\left(x, \boldsymbol{a}_{j}\right) \neq \phi
$$

Let z_{x} be a point of $\Omega(x)$, then

$$
d\left(\boldsymbol{a}_{j}, f\left(z_{x}\right)\right)=\frac{\left|g_{j}\left(z_{x}\right)\right|}{\left\|\boldsymbol{a}_{j}\right\|\left\|f\left(z_{x}\right)\right\|}<x(j=1, \ldots, n+1)
$$

so that we have

$$
\frac{\left\|g\left(z_{x}\right)\right\|}{\left\|f\left(z_{x}\right)\right\|}<\sqrt{n+1}\left(\max _{1 \leq j \leq n+1}\left\|\boldsymbol{a}_{j}\right\|\right) x
$$

which is contrary to (2) since x can be taken arbitrarily near to zero. This implies that (1) must hold.
(b) The case when $\# A\left(S_{f}\right)<n+1$. Then, $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}$ are not in general position and by Definition 5 , there exist at least two identical vectors in $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n+1}\right\}$ in this case. For example, suppose without loss of generality that $\boldsymbol{a}_{1}=$ \boldsymbol{a}_{2}. Then, since $\sigma_{1}\left(x ; \boldsymbol{a}_{1}\right) \neq \sigma_{2}\left(x ; \boldsymbol{a}_{2}\right)$, (1) holds by Definition 3.

Let $\sigma(x ; \boldsymbol{a})$ be an asymptotic spot of first kind of f. Then, there is a positive number δ such that for any $x \in(0, \delta), \sigma(x ; \boldsymbol{a})$ does not contain any zeros of (\boldsymbol{a}, f). For $x \in(0, \delta)$, we put $u(z)=\left\{\begin{array}{cl}\log \|f(z)\|-\log |(\boldsymbol{a}, f(z))|+\log \|\boldsymbol{a}\|+\log x & \text { if } z \in \sigma(x ; \boldsymbol{a}) \\ 0 & \text { otherwise. }\end{array}\right.$ Then, $u(z)$ is a non-negative, non-constant and continuous subharmonic function in $|z|<\infty$. Note that $u(z)>0$ in $\sigma(x ; \boldsymbol{a})$. There is an r_{0} such that for any $r \geq r_{0}$

$$
(|z|=r) \cap \sigma(x ; \boldsymbol{a}) \neq \phi
$$

Let

$$
E(r)=\left\{\theta: r e^{i \theta} \in \sigma(x ; a)\right\}\left(r \geq r_{0}\right)
$$

and we put

$$
\begin{gathered}
B(r, u)=\max _{|z|=r} u(z), \\
\ell(r)=m(E(r)), \\
\theta(r)=\left\{\begin{array}{cl}
\infty \quad \text { if }(|z|=r) \subset \sigma(x ; a), \\
\ell(r) & \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Then, the following lemmas hold.
Lemma 2. For any $r \geq 2 r_{0}$

$$
\log B(r, u)>\pi \int_{r_{0}}^{r / 2} \frac{1}{t \theta(t)} d t+O(1)
$$

Proof. We apply Theorem 8.3 in [3], p. 548 to our $u(z)$ with $k=1 / 2$. We note that from (8.1.10) in [3], p. 536,

$$
\alpha(r) \geq \pi / \theta(r)
$$

in our case and we easily obtain our lemma.
Lemma 3. For any r and R satisfying r_{0} $\leq r<R$,

$$
B(r, u) \leq \frac{R+r}{R-r}\{T(R, f)
$$

$$
-N(R, \boldsymbol{a}, f)+O(1)\}
$$

In particular, for $2 r \geq \max \left(2 r_{0}, 1\right)$,

$$
\begin{equation*}
B(r, u) \leq 3 T(2 r, f)+O(1) \tag{3}
\end{equation*}
$$

Proof. For any z such that $|z|<R$, we have the inequality $\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \theta}\right) \frac{R^{2}-|z|^{2}}{\left|R e^{i \theta}-z\right|^{2}} d \theta$.
Let z be a point satisfying

$$
u(z)=B(r, u)\left(|z|=r \geq r_{0}\right)
$$

Then we obtain by using the definition of $u(z)$ and by the fact that $\|\boldsymbol{a}\|\|f(z)\| /|(\boldsymbol{a}, f(z))|$ ≥ 1

$$
\begin{align*}
B(r, u) & \leq \frac{R+r}{R-r} \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(R e^{i \theta}\right) d \theta \\
& \leq \frac{R+r}{R-r}\{T(R, f)-N(R, \boldsymbol{a}, f) \\
& +\log \|\boldsymbol{a}\|+\log x\} \tag{4}
\end{align*}
$$

In particular, if we take $R=2 r \geq \max \left(2 r_{0}\right.$, 1) in (4), we obtain (3) since

$$
N(2 r, \boldsymbol{a}, f) \geq 0 \text { for } 2 r \geq 1
$$

3. Theorem. Let f be a transcendental holomorphic curve as in Section 1.

Theorem. Let N be the number of asymptotic spots of f which are of first kind and distinct in general position and suppose that λ is finite. Then, we have

$$
N \leq\left\{\begin{array}{cl}
n & \text { if } \lambda \leq 1 / 2 n \\
2 n-1 & \text { if } 1 / 2 n<\lambda<1 \\
2 n \lambda & \text { if } 1 \leq \lambda<\infty
\end{array}\right.
$$

Proof. (a) We first prove that $N \leq 2 n \lambda+$ n. If $N \leq n$, there is nothing to prove, so we suppose without loss of generality that $N \geq n+1$. Suppose now that N is finite and let $\sigma_{1}\left(x ; \boldsymbol{a}_{1}\right)$, $\ldots, \sigma_{N}\left(x ; \boldsymbol{a}_{N}\right)$ be N asymptotic spots of f which are of first kind and distinct in general position. Then, by Lemma 1 and Definition 4 we can find two positive numbers $x_{0}(<1)$ and r_{0} such that for every $j=1, \ldots, N$
(i) $\left(\boldsymbol{a}_{j}, f\right)$ has no zeros in $\sigma_{j}\left(x_{0} ; \boldsymbol{a}_{j}\right)$;
(ii) $\sigma_{j}\left(x_{0} ; \boldsymbol{a}_{j}\right) \cap(|z|=r) \neq \phi\left(r \geq r_{0}\right)$;
(iii) The intersections of any $n+1$ of $\sigma_{1}\left(x_{0}\right.$; $\left.\boldsymbol{a}_{1}\right), \ldots, \sigma_{N}\left(x_{0} ; \boldsymbol{a}_{N}\right)$ are empty.

Here, we use $u_{j}(z), \ell_{j}(r), \theta_{j}(r)$ and $B\left(r, u_{j}\right)$ for $\sigma_{j}\left(x_{0} ; \boldsymbol{a}_{j}\right)$ instead of $u(z), \ell(r), \theta(r)$ and
$B(r, u)$ defined for $\sigma(x ; \boldsymbol{a})$ in Section 2 respectively. Then, by (ii)

$$
\ell_{j}(r)>0\left(r \geq r_{0} ; j=1, \ldots, N\right)
$$

and by (iii)

$$
\begin{equation*}
\sum_{j=1}^{N} \ell_{j}(r) \leq 2 n \pi\left(r \geq r_{0}\right) \tag{5}
\end{equation*}
$$

From (5) we have for $r \geq r_{0}$

$$
\begin{equation*}
\sum_{j=1}^{N} \int_{r_{0}}^{r} \frac{\ell_{j}(t)}{t} d t \leq 2 n \pi \log \frac{r}{r_{0}} . \tag{6}
\end{equation*}
$$

By the Cauchy-Schwarz inequality
(7) $\int_{r_{0}}^{r} \frac{\ell_{j}(t)}{t} d t \int_{r_{0}}^{r} \frac{d t}{t \ell_{j}(t)} \geq\left(\int_{r_{0}}^{r} \frac{d t}{t}\right)^{2}=\left(\log \frac{r}{r_{0}}\right)^{2}$.

From (6) and (7) we obtain the inequality

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{\log \frac{r}{r_{0}}}{\int_{r_{0}}^{r} \frac{d t}{t \ell_{j}(t)}} \leq 2 n \pi\left(r>r_{0}\right) \tag{8}
\end{equation*}
$$

Now, let

$$
I_{j}=\left\{r:(|z|=r) \subset \sigma_{j}\left(x_{0}, \boldsymbol{a}_{j}\right)\right\}
$$

and $\chi_{j}(r)$ be the characteristic function of I_{j}. Then we have
(9) $\pi \int_{r_{0}}^{r} \frac{d t}{t \theta_{j}(t)}=\pi \int_{r_{0}}^{r} \frac{d t}{t \ell_{j}(t)}-\frac{1}{2} \int_{r_{0}}^{r} \frac{\chi_{j}(t)}{t} d t$. As

$$
\frac{1}{2} \int_{r_{0}}^{r} \frac{\chi_{j}(t)}{t} d t \leq \frac{1}{2} \log \frac{r}{r_{0}},
$$

we have from Lemma 2, Lemma 3 and (9)
(10)

$$
\pi \int_{r_{0}}^{r} \frac{d t}{t \ell_{j}(t)} \leq \log T(4 r, f)+\frac{1}{2} \log \frac{r}{r_{0}}+O(1) .
$$

From (8) and (10) we have for $r>r_{0}$

$$
N \log \frac{r}{r_{0}} \leq 2 n \log T(4 r, f)+n \log \frac{r}{r_{0}}+O(1)
$$

from which we easily obtain $N \leq 2 n \lambda+n$.
Suppose next that N is infinite. Then we can choose $p=[2 n \lambda+n]+1$ asymptotic spots of f which are of first kind and distinct in general position. Applying the above method to those p asymptotic spots, we obtain the inequality

$$
p \leq 2 n \lambda+n,
$$

which is imposible. This means that N is finite and that the following inequality must hold.

$$
N \leq 2 n \lambda+n
$$

We note here that the inequality $n+1 \leq N$ results in $\lambda \geq 1 / 2 n$.
(b) We use the same notation as in the proof of (a). Suppose that $N \geq 2 n$. Then by (a), $\lambda \geq$
$1 / 2$. From (6) we have
(11) $\sum_{j=1}^{N} \int_{\gamma_{0}}^{r} \frac{\ell_{j}(t)}{t}\left(1-\chi_{j}(t)\right) d t$

$$
+\sum_{j=1}^{N} 2 \pi \int_{r_{0}}^{r} \frac{\chi_{j}(t)}{t} d t \leq 2 n \pi \log \frac{r}{r_{0}} .
$$

By the Cauchy-Schwarz inequality, we obtain

$$
\begin{align*}
\int_{r_{0}}^{r} \frac{\ell_{j}(t)}{t}\left(1-\chi_{j}(t)\right) d t & \int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t \ell_{j}(t)} d t \tag{12}\\
& \geq\left(\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t\right)^{2}
\end{align*}
$$

Case 1. For j such that

$$
\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t \ell_{j}(t)} d t>0\left(r>r_{0}\right),
$$

we have

$$
\begin{aligned}
& \int_{r_{0}}^{r} \frac{\ell_{j}(t)}{t}\left(1-\chi_{j}(t)\right) d t \\
& \quad \geq\left(\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t\right)^{2} / \int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t \ell_{j}(t)} d t
\end{aligned}
$$

and by Lemma 2 and Lemma 3

$$
\begin{aligned}
& \pi \int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t \ell_{j}(t)} d t \\
& \quad=\pi \int_{r_{0}}^{r} \frac{d t}{t \theta_{j}(t)} \leq \log T(4 r, f)+O(1)
\end{aligned}
$$

so that we have for $r \geq r_{0}$

$$
\begin{align*}
& \int_{r_{0}}^{r} \frac{\ell_{j}(t)}{t}\left(1-\chi_{j}(t)\right) d t \tag{13}\\
& \geq \frac{\pi\left(\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t\right)^{2}}{\log T(4 r, f)+O(1)}
\end{align*}
$$

Case 2. For j such that

$$
\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t \ell_{j}(t)} d t=0\left(r>r_{0}\right),
$$

we have from (12)

$$
\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t=0
$$

and so

$$
\begin{equation*}
\frac{\left(\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t\right)^{2}}{\log T(4 r, f)+O(1)}=0 \tag{14}
\end{equation*}
$$

Using (13) and (14) we have for $r \geq r_{0}$

$$
\begin{align*}
\sum_{j=1}^{N} \int_{r_{0}}^{r} \frac{\ell_{j}(t)}{t}(1 & \left.-\chi_{j}(t)\right) d t \tag{15}\\
& \geq \frac{\pi \sum_{j=1}^{N}\left(\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t\right)^{2}}{\log T(4 r, f)+O(1)}
\end{align*}
$$

Since
$\sum_{j=1}^{N}\left(\int_{r_{0}}^{r} \frac{1-\chi_{j}(t)}{t} d t\right)^{2} \geq N\left(\log \frac{r}{r_{0}}\right)^{2}$

$$
-2\left(\log \frac{r}{r_{0}}\right) \sum_{j=1}^{N} \int_{r_{0}}^{r} \frac{\chi_{j}(t)}{t} d t
$$

we have from (11) and (15) for $r>r_{0}$

$$
\begin{align*}
& \frac{N-2 \sum_{j=1}^{N} \int_{r_{0}}^{r} \frac{\chi_{j}(t)}{t} d t / \log \frac{r}{r_{0}}}{\{\log T(4 r, f)+O(1)\} / \log \frac{r}{r_{0}}} \tag{16}\\
& \quad+2 \sum_{j=1}^{N} \int_{r_{0}}^{r} \frac{\chi_{j}(t)}{t} d t / \log \frac{r}{r_{0}} \leq 2 n .
\end{align*}
$$

Let $\left\{r_{\nu}\right\}$ be a sequence tending to ∞ as $\nu \rightarrow \infty$ such that

$$
\lim _{\nu \rightarrow \infty} \frac{\log T\left(4 r_{\nu}, f\right)}{\log r_{\nu}}=\lambda
$$

Putting $r=r_{\nu}$ in (16) and letting $\nu \rightarrow \infty$, we have
(17)

$$
N \leq 2 n \lambda+2 A(1-\lambda)
$$

where

$$
A=\lim \sup _{\nu \rightarrow \infty} \sum_{j=1}^{N} \int_{r_{0}}^{r_{v}} \frac{\chi_{j}(t)}{t} d t / \log \frac{r_{\nu}}{r_{0}} .
$$

Here, we note that the following inequality holds:

$$
\begin{equation*}
\sum_{j=1}^{N} \chi_{j}(t) \leq n-1 \tag{18}
\end{equation*}
$$

In fact, suppose to the contrary that

$$
\sum_{j=1}^{N} \chi_{j}(t) \geq n
$$

Then, as $N \geq 2 n \geq n+1$, for example, for a $t>$ r_{0} let

$$
\chi_{1}(t)=\cdots=\chi_{n}(t)=1
$$

We then have for any $k \geq n+1$

$$
\left(\cap_{j=1}^{n} \sigma_{j}\left(x_{0}, \boldsymbol{a}_{j}\right)\right) \cap \sigma_{k}\left(x_{0}, \boldsymbol{a}_{k}\right) \neq \phi
$$

which contradicts with (iii) in (a). This implies that (18) must hold. It is easy to obtain

$$
\text { (19) } \quad 0 \leq A \leq n-1
$$

from (18). The inequality $N \geq 2 n$, (17) and (19) imply that $\lambda \geq 1$ and when $1 \leq \lambda<\infty$, we have $N \leq 2 n \lambda$ from (17) since $2 A(1-\lambda) \leq 0$.

Combining the results obtained in (a) and (b)
we have our theorem.
Example 2. Let $f=\left[1, e^{z^{m}}, e^{2 z^{m}}, \ldots, e^{n z^{m}}\right]$, where m is a positive integer. Then, f is a transcendental holomorphic curve such that $\rho=\lambda=$ m. As in the case of Example 1, $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}$ are asymptotic points of f, all asymptotic spots corresponding to them are all of first kind and there are m asymptotic spots corresponding to \boldsymbol{e}_{1} and to \boldsymbol{e}_{n+1} respectively, $2 m$ asymptotic spots corresponding to \boldsymbol{e}_{j} for each $j=2, \ldots, n$. In this case, $N=\# S_{f}=2 n m$ and $A\left(S_{f}\right)=\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n+1}\right\}$, which is in general position.

Remark. (I) When $n=1$, this theorem corresponds to a famous theorem of Ahlfors in [1] and when $n \geq 2$ this theorem is better than Theorem 2 in [5].
(II) Example 2 shows that this theorem is sharp when $\lambda=$ an integer ≥ 1.

References

[1] L. V. Ahlfors: Uber die asymptotischen Werte der meromorphen Funktionen endlicher Ordnung. Acta Acad. Aboensis Math. et Phys., 6, no. 9, 1-8 (1932).
[2] W. K. Hayman: Meromorphic functions. Oxford at the Clarendon Press (1964).
[3] W. K. Hayman: Subharmonic functions. vol. 2, Academic Press, London (1989).
[4] M. Heins: On Lindelöf principle. Ann. Math., 61, 440-473 (1955).
[5] Lü Yinian: On direct transcendental singularities of the inverse function of an algebroidal function. Scientia Sinica, 23, 407-415 (1980).
[6] N. Toda: Boundary behavior of systems of entire functions. Research Bull. College of General Education, Nagoya Univ., ser. B, 25, 1-8 (1980) (in Japanese).
[7] H. Weyl and F. J. Weyl: Meromorphic functions and analytic curves. Princeton Univ. Press, Princeton (1943).

