
176 Proc. Japan Acad., 73, Set. A (1997) [Vol. 73(A),
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1. Introduction. Let/= [f,..., fn+l] be a
transcendental holomorphic curve from C into
the n dimensional complex projective space Pn (C)
with a reduced representation

(fl,’’’, fn+l) C-’- C"+1- {0),
where n is a positive integer.

We use the following notation"

Ill(z) <l f <z> / + IL+ (z)
and for a point a (a,..., an+) in C+- {0}

a (lal + +
(a, f) aL + +

(a, f(z)) aL(z) + + a.+L+(z),
d(a, Az) (a, f(z) ) l/(l all

(On distance "d" see [71, where
used instead of d).

The characteristic function T(r, f) of f is
defined as follows (see [7])"

T(r, f) Jo lg llf(re’)[ldO- log IIf(o)ll.
We note that T(r, f)

lim
_= log r

since f is transcendental.
We put

p lim sup

2 lim inf

log T(r, f)
log r

logT(r, f)
log r

and we say that p is the order of fand the low-
er order of f

Let
V= (a Cn+x" (a, f) 0}.

Then, V is a subspace of Cn+ and 0--< dimV
-< n- 1. It is said that f is linearly nondegener-
ate when dimV= 0 and linearly degenerate
otherwise.

For meromorphic functions in Iz[ < eo we
shall use the standard notation and symbols of
the Nevanlinna theory of meromorphic functions

([2]).
For a C+ V, we put

N(r, a, f) N(r, 1/(a, f))
and we denote the standard basis of Cn+ by el,

e2,..., en+l.
Let X be a subset of C+1. Then, we say that

X is in general position if the elements of X are

linearly independent when #X_< n or if any n
+ 1 elements of X are linearly independent when
#X_>n+ 1.

The purpose of this paper is to extend a

famous result on the number of asymptotic
values of meromorphic functions obtained by
Ahlfors in [1]to holomorphic curves. By the way,
the result in [1] was extended to algebroid func-
tions by Lii Yinian in [5].

2. Definition and lemma. In this section,
we first give a definition of asymptotic point to
holomorphie curves. Let f be as in Section 1.

Definition 1 (asymptotic point)(see Definition
3 in [6]). A pointaof Cn+- Vis an asympto-
tic point of fif and only if there exists a path F"
z z (t) (0 -< t < 1) in [zl < c satisfying the
following conditions"

(i) lim_.a z(t c

(ii) lim,_ d(a, f(z(t ) ) O.
Remark. This definition is a generalization

of "asymptotic values" of meromorphic functions.
In fact, let g g2/g be a transcendental

meromorphic function in Izl < co, where gx and
g2 are entire functions without common zeros.
Suppose that g has an asymptotic value c along a
path L going from a finite point to c and put

g, g].
(i) When c =/: c, for a (-- c, 1) Ce,
d(a, 9(z))

Ildl (Igx (z)I / ]o (z)I) 1/2

Ig(z) cl
"’ 0

IId<l + ]g(z)
as z---’ along L"

(ii) when c , for e C,
d(e, (z)

1

(1 + Ig(z)I) /2
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as z--* oo along L.
Let a be a point of Cn/l- V such that for

anyx(0 ( xK 1) the set
D( x a) {z d(a, f(z)) < x},

which is open, contains at least one component
not relatively compact. Then, let a(x;a) be a
function defined on the interval (0,1] satisfying

(i) for each x (0, 1], a(x; a) is a compo-
nent of D(x a) which is not relatively compact;

(ii) ifx1( x2, then a(xl; a) c a(x.; a).
Definition 2 {asymptotic spot}. We call this

a(x a) an asymptotic spot of f corresponding to
a (cf. Chapter 4 in [4]).

Considering the fact that if al(x;a)f’l 6

(x; a) for an x (0, 1], then, a (x;a)
a2(x; a) since al(x; a) and a2(x; a) are com-
ponents of D(x; a), we give the following

Definition 3. Let al(x; a ) and a2(x;
b) be two asymptotic spots of f. Then, we say
that they are distinct either if a b or if a-- b
and there exists an x (0, 1] such that

a(x;a) ;3 a(x; a) .
it is readily seen that a is an asymptotic

point of f if and only if there exists an asympto-
tic spot of f corresponding to a.

Remark. There can exist more than one
asymptotic spots corresponding to a single point.
(see Example 1 given below.)

It is well known that a Picard exceptional
value of transcendental meromorphic function in

Izl < oo is an asymptotic value. As a generaliza-
tion of this fact, we have

Proposition. Suppose that (a, f(z)) has 0 as
a Picard exceptional value. Then, a is an asymp-
totic point of f (see [6], Theorem 1).

Unlike the case of meromorphic functions,
we have no general results on the number of
asymptotic points for holomorphic curves. To
obtain a result on it, we classify the asymptotic
spots of f as follows.

Definition 4. If an asymptotic spot a(x;a)
of f corresponding to a satisfies the following
condition:

(,) There exists a positive number ((
1) such that for any x(0(x<), a(x; a)
does not contain any zeros of (a, f),
then we say that a(x a) is of first kind; and of
second kind otherwise.

Let SI be a set of asymptotic spots of f and
put

A(S) (a" a(x a)
Definition 5. We say that the elements of

SI are distinct in general position if they are dis-
tinct and if A(S) is in general position.

z 2z enZ]Example 1. Let h= [1, e, e
Then"
(a) When 0-" O,

d(e, h(re ))
1 -- 0 (r---*

2rcos0 2nrcosO 1/2(l+e +."+e
and when 0 z

d(el, h(re))-- 1 (r--* oo).
(b) For j 2,..., n, when 0 0 or zc

d(e, h(re ))
(i-1)rcosOe

--* 0 (r-- o)
(1 -+- e2rcs -+- -+- e2nrcs 1/2

and when 0 z/2 or 3r/2
i0d e h (re )) ---* 1/v/n + 1 (r --* oo).

(c) When 0-- n"

d(e.+, h(reO))
nrcosOe - 0 (r--* o )

2rcos8 2nrcos8 1/2(l+e +."+e

and when 0
d(e,+l, h(re))--* 1 (r-- oo).

These facts show that el,..., e,+ are
asymptotic points of h, all asymptotic spots cor-
responding to them are of first kind and there
are two asymptotic spots corresponding to e (j

2,..., n) when n 2. In this case # S 2n
and A (Sz) {e,..., e.+}, which is in general
position.

Lemma 1. Let al(x;al),..., an+l(x;an+l)
be n + i asymptotic spots of f distinct in general
position. Then, there exists a positive number 6

(0, 1) such that for any x (0, 6),
(1) f’li=lai(X, a) .

Proof Put S= {aj(x aj ) j 1,
n+l}.

(a) The case when #A(S) n+ 1. Then,
by Definition 5, al,..., an+l are in general posi-
tion. For j 1,..., n + 1, put

a (al, a9.,..., an+l)
and

g (a, f) ajlf + +
then det(a) =# 0 and f,..., fn+l can be repre-
sented as linear combinations of gl,..., gn+l"

f bg + + b.+g.+
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and we have for any z
(2) [If(z) < v/n + i( max IIb ll)[Ig(z)

l<jn+l

where g [gl,..., g,+l] and b (bl,...,
Now, suppose that (1) is false. Then for any

fi (0, 1), there is an x (o, 6) such that
n+l9(x a= a( x, a =/: .

Let zx be a point of tg(x), then

d(a, f(Zx))= Ila)l][V(Zx)]] <x(J= 1,..., n+ 1),

so that we have

IY(Zx)]] < /n + 1( max Ilall)x,
l</<n+l

which is contrary to (2) since x can be taken
arbitrarily near to zero. This implies that (1)
must hold.

(b) The case when #A(Ss) < n + 1. Then,
al,..., a,+ are not in general position and by
Definition 5, there exist at least two identical
vectors in {al,..., a,+1} in this case. For exam-
ple, suppose without loss of generality that

a2. Then, since 61(x al 4: a2(x; a ), 1
holds by Defirfition 3.

Let a(x;a) be an asymptotic spot of first
kind of f. Then, there is a positive number such
that for any x (0, ), a(x;a) does not con-
tain any zeros of (a, f). For x (0, ), we put

[logl[f(z)ll- log[(a, f(z))l / logl[al[ / logx if z e a(x; a)
0 otherwise.

Then, u (z) is a non-negative, non-constant and
continuous subharmonic function in
Note that u (z) > 0 in a(x;a). There is an ro
such that for any r _> ro

(Izl r) a(x a) 4= .
Let

i0E(r) {0" re a(x a)} (r > to)
and we put

B(r, u) = max u(z),

(r) m(E(r)),

{ oo if <lzl- r) : a(x;a),O(r)
g(r) otherwise.

Then, the following lemmas hold.
Lemma 2. For any r _> 2r0

r/2 1
log B(r, u) > r tO(t)dt + 0(1).

ro
Proof We apply Theorem 8.3 in [3], p. 548

to our u(z)with k 1/2. We note that from
(8.1.10) in [3], p. 536,

a(r) >_  r/O(r)
in our case and we easily obtain our lemma.

Lemma 3. For any r and R satisfying ro
<_r<R,

B(r, u) < R +r(T(R f)-R-r
N(R, a, f) / 0(1)).

In particular, for 2r >_ max(2ro, 1),
(3) B(r, u) K 3T(2r, f) 4- O(1).

Proof For any z such that [z[ ( R, we have
the inequality 1 r" R --{z{

u(z) u(Re’)
IRe*- zl

Let z be a point satisfying
u(z) B(r, u) <lzl r ro>.

Then we obtain by using the definition of
u(z) and by the fact that IIall IIf(z)II/I(a, f(z))[
kl

R + r 1
B(r, u) R-- r 2o

u(Re*)dO

R+r
R{T(R, f) N(R, a, f)

In particular, if we take R 2r max(2ro,
1) in (4), we obtain (3) since

N(2r, a, f) 0 for 2r 1.
3. Theorem. Let f be a transcendental

holomorphic curve as in Section 1.
Theorem. Let N be the number of asympto-

tic spots of f which are of first kind and distinct
in general position and suppose that 2 is finite.
Then, we have

n if 2 1/2n,
NK 2n-- 1 ifl/2n < < 1,

2n if 1 E < .
Proof (a) We first prove that N 2n +

n. If N E n, there is nothing to prove, so we sup-
pose without loss of generality that N k n + 1.
Suppose now that N is finite and let a(x;a),

aN(X; aN) be N asymptotic spots of fwhich
are of first kind and distinct in general position.
Then, by Lemma 1 and Definition 4 we can find
two positive numbers xo(< 1) and % such that
for every j 1,..., N

(i) (a, f) has no zeros in a(Xo a);
(ii) a(xo a) (]z[ r) (r ro);
(iii) The intersections of any n + 1 of a (Xo;

ai) aN(Xo aN) are empty.
Here, we use u (z), (r), 0 (r) and B (r, u)

for a(xo; a) instead of u(z),(r), 0(r) and
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B(r, u) defined for a(x; a) in Section 2 respec-
tively. Then, by (ii)

#i(r) > 0 (r >_ ro; j 1,..., N)
and by (iii)

N

(5) Z#(r) <- 2mr (r -> to).
j----1

From (5) we have for r--> ro

(6) dt < 2nTr log--..
j=l’ro

By the Cauchy-Schwarz inequality

(7) t d t#(t) >- )- lg
or0 t.

From ((3) and (7) we obtain the inequality

N lgro
(8) : <_ 2nzr (r > ro).

j=l f dt

ro tEi(t)
Now, let

I (r" <lzl- r) a)}
and Z (r)be the characteristic function of Ii.

Then we have

fr dt Sr dt lfrorXi(t)(9) zr tOi(t) rc t gi(t) 2 t dt.
ro r

As
1 fr zi(t) 1 r- ro ---dt <- -ff log 70’

we have from Lemma 2, Lemma 3 and (9)

dt r + 0(1)(10) 7r tgj(t) <- logT(4r, f) + logro
From (8) and (10) we have for r > ro

r r
N Ogo --< 2nlogT(4r f) + n og- + 0(1)

from which we easily obtain N <- 2n2 + n.
Suppose next that N is infinite. Then we can

choose p [2n2 + n] + 1 asymptotic spots of f
which are of first kind and distinct in general
position. Applying the above method to those p
asymptotic spots, we obtain the inequality

p<_2n+n,
which is imposible. This means that N is finite
and that the following inequality must hold.

N _< 2n2 + n.
We note here that the inequality n + 1 _< N

results in 2 _> 1/2n.

(b) We use the same notation as in the proof
of (a). Suppose that N-> 2n. Then by (a), 2 _>

1/2. From (6) we have

(11) i_1f/ t (1- x(t))dt
u fr (t)+ 27 Z1 dt < 2nTrlog

r

i=1 ro t ro"
By the Cauchy-Schwarz inequality, we obtain

fri(t) tfrfl x (t)
(12)

ro t (1- x(t))d tg(t) dt

-> (fr/1 x(t )dt)
Case 1. For j such that

rl x(t)
ro tg(t) dt > O (r > to),

we have
rEi(t)

t (1 )(.(t))dt

,
and by Lemma 2 and Lemma 3

rl z(t)
7r tg(t) dt

ro
r dt

re tO(t) <- logr(4r, f) + O(1),
r

so that we have for r _> ro

(13)
rEi(t)
o t (1 x(t))dt

zc(rl xi(t)0td> logT(4r, f) + O(1)"
Case 2. For j such that

rl x(t)
ro tE(t) dt= O (r > ro),

we have from (12)
rl x(t)

ro t dt 0
and so

(14) t dt

logT(4r, f) + O(1) 0.

Using (13) and (14) we have for r _> ro

(15) i@fr[gi (t
t (1 xi(t))dt

7rf=l(j]rl z,(t’dt)a
ro t

logT(4r, f) + 0(1)

Since
N (frl-- xi(t)

" o t
r
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/1o r\& FX(t)

we have from (11) and (15) for r > ro

2g fr X.j (t ) dt/logo
(16)

N--
’=lJro t

{ logT(4r, f) -+- O(1) }/log)--,

+2_ t dt/og-0- <- 2n.

Let {rv} be a sequence tending to oo as --* oo

such that
log T(4r, f)

lim 2.
-oo log r

Putting r :rv in (16) and letting v--- oo, we
have
(17) N K 2n2 + 2A(1 --/),
where r-, (t) rA lim sup] 2: dt/log_o.-oo =i-,o t
Here, we note that the following inequality holds"

(18) :X(t) <- n- 1.

In fact, suppose to the contrary that
N

x(t) > n.

Then, as N _> 2n _>n + 1, for example, for a t >
ro let

x(t) x.(t) 1.
We then have for any k n + 1

which contradicts with (iii) in (a). This implies
that (18) must hold. It is easy to obtain
(19) 0 NA<_-- 1
from (18). The inequality N _> 2, (17) and (19)
imply that 2 _> 1 and when 1 _< 2 < c, we have
N <- 22 from (17)since 2A(1 2) <- 0.

Combining the results obtained in (a) and (b)

we have our theorem.
Z 2Z nZz]Example 2. Let f-- [1, e ,e e

where m is a positive integer. Then, f is a trans-
cendental holomorphic curve such that p /
m. As in the case of Example 1, e,..., en+ are
asymptotic points of f, all asymptotic spots cor-
responding to them are all of first kind and there
are m asymptotic spots corresponding to e and
to en+ respectively, 2m asymptotic spots corres-
ponding to ej for each j 2,..., n. In this case,
N #S 2nm and A(S,) (el, e+},
which is in general position.

Remark. (I) When n 1, this theorem cor-
responds to a famous theorem of Ahlfors in [1]
and when n _> 2 this theorem is better than
Theorem 2 in [5].

(II) Example 2 shows that this theorem is
sharp when , an integer 1.
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