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Dirichlet Problem at Infinity for Harmonic Maps
between Carnot Spaces

By Seiki NISHIKAWA*) and Keisuke UENO* *)

(Communicated by Kiyosi IT0, M. J. A., Nov. 12, 1997)

If M and M’ are simply connected complete
Riemannian manifolds of negative curvature, one
can compactify them by adding the spheres at in-
finity M and M’, defined by the asymptotic
classes of geodesic rays in M and M’, respective-
ly. Given a continuous map f:M--, M’, the
Dirichlet problem at infinity consists, roughly
speaking, of finding a harmonic map u: M- M’
which assumes the boundary value f continuously.

The first progress toward this problem was

established by Li and Tam [6], [7], [8], Gromov [9]
and Akutagawa [1] around 1990, in the case that
M and M’ both are real hyperbolic spaces. In
particular, Li and Tam proved a number of signi-
ficant results concerning uniqueness, existence
and boundary regularity of solutions. Subse-
quently, in 1993 Donnelly [3] extended their re-
sults to the context of rank one symmetric spaces
of noncompact type, namely to complex or qua-
ternion hyperbolic spaces and the Cayley plane.
Recently, Ueno [12] proved that these can be
further extended to the case of Damek-Ricci
spaces, which are a generalization of rank one

symmetric spaces of noncompact type ([2]).
We study the problem for more general fami-

ly of homogeneous spaces of negative curvature,
that is, in the context of k-term Carnot spaces
arising as a semidirect solvable extension of the
k-step nilpotent Lie groups called Carnot groups
([ 13 l).

More precisely, let G be a simply connected
solvable Lie group satisfying the following condi-
tions:

1. G is diffeomorphic to the product R+ N
of the positive real line R+ with a nilpotent
Lie group N.

2. If n and fl R {H}-+-n denote the Lie
algebras of N and G respectively, then n
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has a graded Lie algebra structure n-

n given, for 1 k, by

n (X n lad(H)X iX}.
Then G admits a left invariant metric g of

negative curvature ([5]), and we call M (G, g)
a k-term Carnot space. For example, real hyperbo-
lic spaces are 1-term Carnot spaces, and complex
or quaternion hyperbolic spaces and the Cayley
plane are 2-term Carnot spaces.

We see that the realization of M as R+ x N
defines a local coordinate chart at the boundary
OM of the compactification M M U OM, and
in this chart, the metric g is realized as a k-ply
warped product metric

dy 1 1 1
g + --g +g + + -g,

Y Y Y Y
where y denotes the coordinate on R+. Denoting
by c the point at infinity corresponding to the
geodesics in the R+ direction, OM\ (oo} can be
identified with {0} x N. Moreover, each sub-
space n of the Lie algebra =1 n of N de-
fines by left translations a distribution on OM,
which we denote also by n.

Let M and M’ be k-term Carnot spaces and
u C(M, M’) N C(M, M’) a proper smooth
map from M to M’ which extends up to the
boundary as a C map. Set f--ulOM. We say
that u or f is nondegenerate if, in the coordinate
charts R+ x N and R+ x N’ at the boundaries,

f satisfies

at any p N. j=l

Our first observation is that the boundary
value f of a nondegenerate proper harmonic map
u Coo (M, M’) 71 C k (, M’) preserves the
filtrations on the boundaries defined by distribu-
tions n and

Theorem 1. Let u Coo (M, M’) f’l C (M, M’)
be a nondegenerate proper harmonic map between
k-term Carnot spaces M and M’. Then the bound-
ary value f= u IBM of u satisfies for each
l<-i<-k
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(1) df(Z
j--1 j---1

at any p N.
In fact, under the assumption of Theorem 1,

one can deduce the asymptotic behavior of higher
order derivatives, in the R+ direction, of a non-
degenerate proper harmonic map f near the
boundary M. In particular, we observe

Theorem 2. t u C (M,M’) C* (M, M’)
be a nondegenerate proper harmonic map between
k-term Carnot spaces M and M’. Then the asympto-
tic behavior in the R+ direction of u near the
boundary 8M is determined by the boundary value

f= uM of u.
This leads, for instance, to the following un-

iqueness result of the Dirichlet problem at infin-
ity for harmonic maps.

Theorem 3. Let u, v C (M, M’) C
(M, M’) be nondegenerate proper harmonic maps
between k-term Carnot spaces M and M’. If u and
y agree on M, then u y on M everywhere.

For a given nondegenerate boundary data f
satisfying the necessary condition (1), Theorem 2
also enables one to construct an asymptotically
harmonic map assuming f on the boundary. Then,
by applying the parabolic harmonic map equation
to deform these approximate solutions to desired
harmonic maps ([6]), we obtain the following ex-
istence result.

Theorem 4. Let M and M" be k-term Carnot
spaces and f C’ (M, M’), 0 1, a

nondegenerate map satisfying (1). Then there exists

a harmonic map u C (M, M’) C (M, M’)
which assumes the boundary value f continuously.

Let CH denote the m-dimensional complex
hyperbolic space of holomorphic sectional curva-
ture --1, that is, the unit ball in Cm

with its
Bergman metric. Then, for m 2, CHm is a
2-term Carnot space and the Lie algebra n n
+ ne of the nilpotent part of the realization R+
x N of CH is a Heisenberg algebra. In this

case, the sphere at infinity of CHm is identified
with the unit sphere Sem-, and the necessary
condition (1) for the boundary value f of a proper
harmonic self-map u of CHm means that f:
S-1 S- is a contact transformation.

It has been known that if, in particular,

u" CHm--* CH is a proper holomorphic map,
then u extends smoothly up to the boundary and

f-- ulS2-1 is a CR map ([4]). Conversely, we can
prove the following.

Theorem 5. Let M CHm, M" CH" be
the complex hyperbolic spaces of dimension rn, m" >_
2, respectively. Let u C(M, M’) C4(M, M’)
be a nondegenerate proper harmonic map and f
IIS2m-1. If f" S2m-l’-’ S2m’-1

is a CR map, then
u is a holomorphic map.
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