Construction of High-rank Elliptic Curves with a Non-trivial Rational Point of Order 2

By Shoichi Kihara
Department of Neuropsychiatry School of Medicine, Tokushima University
(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1997)

In [2], Nagao constructed a family of infinitely many elliptic curves over \boldsymbol{Q} with a non-trivial rational 2 -torsion point and with rank ≥ 6. Also Fermigier gave in [3] an example of an elliptic curve over \boldsymbol{Q} (t) with non-constant modular invariant, of rank at least 8 , with a non-trivial 2 -torsion point, and showed as a corollary that there are infinitely many elliptic curves of rank at least 8 with a rational 2 -torsion point.

In this paper we improve these results, and prove the,

Theorem. There are infinitely many elliptic curves over \boldsymbol{Q}, of rank at least 9 with a non-trivial rational 2-torsion point.

1. We consider the following elliptic curve ε over $\boldsymbol{Q}(t)$. The construction is similar as in [2]. $\varepsilon: y^{2}=A x^{4}+B x^{2}+C$
where $A=t^{2}+686$,

$$
\begin{aligned}
& B=-2 t^{4}+216 t^{2}-68257, \text { and } \\
& C=t^{6}-326 t^{4}+30529 t^{2}+1568196 . \\
& \quad \text { There are following points on } \varepsilon, \\
& P_{1}=\left(t+5,26 t^{2}+315 t-539\right), \\
& P_{2}=\left(-t+5,26 t^{2}-315 t-539\right), \\
& P_{3}=\left(t+9,15\left(2 t^{2}+35 t+49\right)\right), \\
& P_{4}=\left(-t+9,15\left(2 t^{2}-35 t+49\right)\right), \\
& P_{5}=\left(t+16,10\left(4 t^{2}+84 t+539\right)\right), \text { and } \\
& P_{6}=\left(-t+16,10\left(4 t^{2}-84 t+539\right)\right) .
\end{aligned}
$$

There is still another point on ε where

$$
\begin{aligned}
P_{7}=(& \frac{-5 t+7}{7}, \\
& \left.\frac{-24 t^{3}-70 t^{2}+1911 t+60025}{49}\right) .
\end{aligned}
$$

Now we specialize $t=\frac{-s^{2}+32}{2 s}$, then we have one more point on ε where

$$
P_{8}=\left(\frac{s^{2}+32}{2 s}, \frac{6\left(s^{4}-15 s^{2}+1024\right)}{s^{2}}\right) .
$$

To get more points, we consider ε over the function field of the following elliptic curve over \boldsymbol{Q} with a positive rank.

$$
C: q^{2}=p(p+11520)(p+11648)
$$

The rank of C is positive as (4480, 1075200) is on C and this point is of infinite order in the Mordell-Weil group of C, by the Lutz-Nagell theorem.

Let $\boldsymbol{Q}(C)$ be the function field of C, we now consider ε over $\boldsymbol{Q}(C)$ by specializing $s=\frac{q}{2 p}$.

Then we have the point $P_{9}=\left(x_{9}, y_{9}\right)$ on ε where

$$
\begin{aligned}
x_{9}= & \left(134184960-p^{2}\right) /(4 q) \text { and } \\
y_{9}= & 3(18005603490201600+ \\
& 13047608770560 p+1984393728 p^{2}+ \\
& \left.97236 p^{3}+p^{4}\right) /\left(2 q^{2}\right) .
\end{aligned}
$$

2. Now we consider the following elliptic curve. $\varepsilon^{\prime}: y^{2}=x\left(A x^{2}+B x+C\right)$.

Let $P_{i}=\left(x_{i}, y_{i}\right)$, where $1 \leq i \leq 9$, be the above points on ε, then $Q_{i}=\left(x_{i}{ }^{2}, x_{i} y_{i}\right)$ are on ε^{\prime}.

Proposition. Q_{1}, \ldots, Q_{9} are independent points.

Proof. We specialize $(p, q)=(4480,10752$ $00)$.

Then we have 9 rational points R_{1}, \ldots, R_{9} obtained from Q_{1}, \ldots, Q_{9}. By using calculation system PARI, we see that the determinant of the matrix $\left(<R_{i}, R_{j}>\right)(1 \leq i, j \leq 9)$ associated to the canonical height is 14736043141.66 . Since this determinant is non-zero, we see Q_{1}, \ldots, Q_{9} are independent.
Q. E. D.

Now this Proposition and Theorem 20.3 in [1] establishes our Theorem.

References

[1] J. H. Silverman: The arithmetic of elliptic curves. Graduate Texts in Math., vol. 106, Springer-Verlag, New York (1986).
[2] K. Nagao: Construction of high-rank elliptic curves with a non trivial torsion point. Math. Comp., 66, 411-415 (1997).
[3] S. Fermigier: Exemples de courbes elliptiques de grand rang sur $\boldsymbol{Q}(t)$ et sur \boldsymbol{Q} possédant des points d'order 2. C. R. Acad. Sci. Paris, 322, ser. 1, 949-952 (1996).

