On the Rank of Elliptic Curves with Three Rational Points of Order 2. II

By Shoichi KiHARA
Department of Neuropsychiatry School of Medicine Tokushima University
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 13, 1997)

In this note, we prove.
Theorem. There are infinitely many elliptic curves with rank ≥ 5 over \boldsymbol{Q}, which have 3 distinct non-trivial rational points of order 2 .

This improves the result of our previous paper [2], where we proved the theorem just as above with rank " ≥ 4 ", however, instead of $" \geq 5 "$.

To prove our Theorem, we shall follow the same method as in [2], and use in particular the Proposition 1 in that paper. Moreover, we shall utilize an auxiliary elliptic curve C with positive rank as in [3].

1. As in [2], let $K=\boldsymbol{Q}(t), t$ being a variable, $\quad\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=(3+15 t, 5+9 t, 9+$ $5 t, 45+t$), and $\beta=45 t$, then we obtain the following elliptic curve

$$
\varepsilon \quad y^{2}=A_{0} x^{4}+B_{0} x^{2}+C_{0}
$$

where $A_{0}=3136\left(3 t^{2}-35\right)\left(5 t^{2}-37\right)\left(15 t^{2}+\right.$ 241),
$B_{0}=-6272\left(184725 t^{6}-4373183 t^{4}\right.$

$$
\left.+25324735 t^{2}-32932757\right)
$$

$C_{0}=(45 t)^{2} A_{0}$.
Then ε has the following $5 K$ points :
$P_{0}=\left(3,-168\left(225 t^{4}-1154 t^{2}-8287\right)\right)$,
$P_{1}=\left(-3,168\left(225 t^{4}-1154 t^{2}-8287\right)\right)$,
$P_{2}=\left(5,280\left(135 t^{4}-1550 t^{2}+8583\right)\right)$,
$P_{3}=\left(9,504\left(75 t^{4}-2454 t^{2}+9547\right)\right)$,
$P_{4}=\left(45,2520\left(15 t^{4}+2850 t^{2}-26417\right)\right)$.
As A_{0}, B_{0}, and C_{0} satisfy the conditions for A, B, and C in Proposition 1 in [2] and $P_{0} \in \varepsilon$, ε has 3 distinct, non-trivial K-points of order 2 .
2. Next, let us consider the following elliptic curve:
$C: q^{2}=p\left(p^{2}-20406000 p+77192390246400\right)$.
(4907760, 2355724800) is on C, and by Lutz- Nagell theorem, this point is of infinite order in the Mordell-Weil group of C, so that C has positive rank.

Let $\boldsymbol{Q}(\boldsymbol{C})$ be the function field of \boldsymbol{C}. We consider ε over $\boldsymbol{Q}(C)$, like in [3], by specializing t $=q /(420 p)$.

Then we have the point $P_{5}=\left(x_{5}, y_{5}\right)$ on ε, where
$x_{5}=(-31 p+149360640) /(p-8785920)$,
$y_{5}=$
(-157057064941217386095443548569600000
$+136102717091505480583348224000 p$
$-41103902930013624729600 p^{2}$
$+5132010223042560 p^{3}-235101184 p^{4}$
$\left.+3 p^{5}\right) /\left(2469600 p^{2}(p-8785920)\right)$.
Proposition. $\boldsymbol{Q}(C)$-rank of ε is at least 5 .
Proof. Let $\psi_{p_{0}}$ be the birational transformation defined in [2] and $Q_{i}=\phi_{p_{0}}\left(P_{i}\right), i=1, \ldots$, 5.

Specializing $(p, q)=(4907760,2355724800)$, we have 5 rational points R_{1}, \ldots, R_{5} obtained from Q_{1}, \ldots, Q_{5}.

By ușing calculation system PARI, we see that the determinant of the matrix $\left(<R_{i}, R_{j}>\right)$ ($1: \leq i, j \leq 5$) associated to the canonical height is 12244.17 . Since this determinant is non-zero, we see that R_{1}, \ldots, R_{5} are independent points.

So we see Q_{1}, \ldots, Q_{5} are independent. Q.E.D.
Now this Proposition and Theorem 20.3 in [1] establishes our Theorem.

References

[1] J. H. Silverman: The arithmetic of elliptic curves. Graduate Texts in Math., vol. 106, Springer-Verlag, New York (1986).
[2] S. Kihara: On the rank of elliptic curves with three rational points of order 2. Proc. Japan Acad., 73A, 77-78 (1997).
[3] S. Kihara: On the rank of the elliptic curve $y^{2}=$ $x^{3}+k$. II. Proc. Japan Acad., 72A, 228-229 (1996).

