Transcendence of Rogers-Ramanujan Continued Fraction and Reciprocal Sums of Fibonacci Numbers

By Daniel Duverney, ${ }^{*)}$ Keiji Nishioka, ${ }^{* *)}$ Kumiko Nishioka, ${ }^{* * *)}$ and Iekata Shokawa****)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1997)

The Rogers-Ramanujan continued fraction $R R(q)$ is defined by

$$
R R(q)=1+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\frac{q^{4}}{1}+\cdots
$$

which is known to have the expansions

$$
\begin{aligned}
R R(q) & =\frac{\sum_{k=0}^{\infty} \frac{q^{k^{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)}}{\sum_{k=0}^{\infty} \frac{q^{k^{2}+k}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)}} \\
& =\prod_{k=0}^{\infty} \frac{\left(1-q^{5 k+2}\right)\left(1-q^{5 k+3}\right)}{\left(1-q^{5 k+1}\right)\left(1-q^{5 k+4}\right)}
\end{aligned}
$$

(cf. [2 ; (3.4.9)]). Irrationality measures were given by Osgood [8] and Shiokawa [9]. It is proved in [9] that, for any integer $d \geq 2$, there is a constant $C=C(d)>0$ such that

$$
\left|R R\left(\frac{1}{d}\right)-\frac{p}{q}\right|>C q^{-2-B / \sqrt{\log q}}
$$

for all integers $p, q(\geq 2)$, where $B=\sqrt{\log d}$. Matala-Aho [5] obtained some higher degree irrationality results. An example of Theorem 1 in [5] is $R R((\sqrt{5}-1) / 2) \notin \boldsymbol{Q}(\sqrt{5})$.

In this note we first prove the following.
Theorem 1. The Rogers-Ramanujan continued fraction $R R(q)$ is transcendental for any algebraic number q with $0<|q|<1$.

The proof is a simple application of Lemma 1 and 2 below, which are proved in the same manner as in [3]. Lemma 2 is a straightforward consequence of a recent theorem of Nesterenko on modular functions ([6] and [7]).

As usual we set for $|q|<1$

$$
E_{2}(q)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

[^0]\[

$$
\begin{aligned}
& E_{4}(q)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \\
& E_{6}(q)=1-540 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}
\end{aligned}
$$
\]

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$,

$$
\eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

$\stackrel{\text { and }}{\theta_{3}}=1+2 \sum_{n=1}^{\infty} q^{n^{2}}, \theta=\theta_{4}=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}}$,
$\theta_{2}=2 q^{1 / 4} \sum_{n=1}^{\infty} q^{n(n-1)}$.
Let $\boldsymbol{K}=\boldsymbol{Q}\left(E_{2}, E_{4}, E_{6}\right)$.
Lemma 1 ([4]). Let $y=y(q)$ denote any one of θ_{3}, θ_{4}, and θ_{2}. Then the functions $\eta\left(q^{k}\right)$, $\eta^{\prime}\left(q^{k}\right), \eta^{\prime \prime}\left(q^{k}\right), y\left(q^{k}\right), y^{\prime}\left(q^{k}\right)$, and $y^{\prime \prime}\left(q^{k}\right)$ are algebraic over \boldsymbol{K} for every positive integer k, where "" denotes the derivation $q \frac{d}{d q}$.

Lemma 2 ([4]). Suppose that α is an algebraic number with $0<|\alpha|<1$. If a nonconstant function f is algebraic over \boldsymbol{K} and defined at α, then $f(\alpha)$ is transcendental.

Proof of Theorem 1. Let
$F(q)=\frac{q^{1 / 5}}{1}+\frac{q}{1}+\frac{q^{2}}{1}+\frac{q^{3}}{1}+\frac{q^{4}}{1}+\cdots$,
then

$$
\begin{aligned}
\frac{1}{F(q)}-F(q)-1 & =q^{1 / 5} \frac{\prod_{n=1}^{\infty}\left(1-q^{n / 5}\right)}{\prod_{n=1}^{\infty}\left(1-q^{5 n}\right)} \\
& =q^{2 / 5} \frac{\eta\left(q^{1 / 5}\right)}{\eta\left(q^{5}\right)}
\end{aligned}
$$

(see [1; p. 85]). Applying Lemma 1 and 2 to the function $f(q)=\eta(q) / \eta\left(q^{25}\right)$, we see that, for any algebraic number q with $0<|q|<1, f(q)$ is transcendental, and so is $F(q)$ from the formula above.

Now we give further examples of continued fractions whose transcendence can be easily deduced from Lemma 1 and 2. For any algebraic number q with $0<|q|<1$, the following con-
tinued fractions (i), (ii), and (iii) are transcendental:
(i) $\begin{aligned} \frac{1}{1}+\frac{q}{1+q}+\frac{q^{2}}{1+q^{2}}+\frac{q^{3}}{1+q^{3}} & +\cdots \\ & =\frac{\theta_{2}\left(q^{1 / 2}\right)}{2 q^{1 / 8} \theta_{3}(q)}\end{aligned}$
(see [1; p. 221, Entry 1 (i)]).
(ii) $\frac{1}{1+q}+\frac{q^{2}}{1+q^{3}}+\frac{q^{4}}{1+q^{5}}+\frac{q^{6}}{1+q^{7}}+\cdots \cdot$

For, if we put
$v=\frac{q^{1 / 2}}{1+q}+\frac{q^{2}}{1+q^{3}}+\frac{q^{4}}{1+q^{5}}+\frac{q^{6}}{1+q^{7}}+\cdots$,
then

$$
v+\frac{1}{v}=\frac{2 \theta_{3}(q)}{\theta_{2}\left(q^{2}\right)}
$$

(see [1; p. 221, Entry 1 (ii)]).
$\begin{aligned} \text { (iii) } \frac{1}{1}+\frac{q+q^{2}}{1}+\frac{q^{2}+q^{4}}{1} & +\frac{q^{3}+q^{6}}{1}+\cdots \\ & =\frac{\eta(q) \eta\left(q^{6}\right)^{3}}{q^{1 / 3} \eta\left(q^{2}\right) \eta\left(q^{3}\right)^{3}}\end{aligned}$
(see [1; p. 345, Entry 1]).
Next, we prove the transcendence of reciprocal sums of some binary linear recurrences. Our results below generalize those obtained in [5].

Let $k=\theta_{2}^{2}(q) / \theta_{3}^{2}(q)$. Then

$$
\begin{aligned}
& K:=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\frac{\pi}{2} \theta_{3}^{2}(q) \\
& E:=\int_{0}^{1} \frac{\sqrt{1-k^{2} t^{2}}}{\sqrt{1-t^{2}}} d t=K+\frac{\pi^{2}}{k} \frac{\theta_{4}^{\prime}(q)}{\theta_{4}(q)}
\end{aligned}
$$

(see [2; (2.1.13), (2.3.17)]).
Lemma 3. Let s be a positive integer and let

$$
\begin{aligned}
& f_{2 s}(q)=\sum_{n=1}^{\infty} \frac{1}{\left(q^{-n}-q^{n}\right)^{2 s}} \\
& g_{s}(q)=\sum_{n=1}^{\infty} \frac{1}{\left(q^{-n}+q^{n}\right)^{s}}
\end{aligned}
$$

Then $f_{2 s}(q), f_{2 s}\left(q^{2}\right), g_{s}(q)$, and $g_{s}\left(q^{2}\right)$ are algebraic over K.

Proof. By Table 1(i) in [10], $f_{2 s}(q)$ can be written as a polynomial of $k, K / \pi, E / \pi$ with rational coefficients, and so $f_{2 s}(q)$ and $f_{2 s}\left(q^{2}\right)$ are algebraic over \boldsymbol{K} by Lemma 1. Similarly, $g_{2 s}(q)$, $g_{2 s}\left(q^{2}\right), g_{2 s-1}(q)$, and $g_{2 s-1}\left(q^{2}\right)$ are algebraic over \boldsymbol{K} by Table 1(ii), (vi) in [10].

Let α and β be algebraic with $\alpha \neq \beta$ and $|\beta|$
<1. Put

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad V_{n}=\alpha^{n}+\beta^{n}
$$

Theorem 2. If $\alpha \beta= \pm 1$, then the numbers

$$
\sum_{n=1}^{\infty} \frac{1}{U_{n}^{2 s}}, \quad \sum_{n=1}^{\infty} \frac{1}{V_{n}^{2 s}}
$$

are transcendental for any positive integer s.
Theorem 3. If $\alpha \beta=1$, then the number

$$
\sum_{n=1}^{\infty} \frac{1}{V_{n}^{s}}
$$

is transcendental for any positive integer s.
Theorem 4. If $\alpha \beta=-1$, then the number

$$
\sum_{n=1}^{\infty} \frac{1}{U_{2 n-1}^{2}}
$$

is transcendental for any positive integer s.
Proof of Theorem 2. If $\alpha \beta=1$, then

$$
\begin{aligned}
(\alpha-\beta)^{-2 s} \sum_{n=1}^{\infty} \frac{1}{U_{n}^{2 s}} & =\sum_{n=1}^{\infty} \frac{1}{\left(\beta^{-n}-\beta^{n}\right)^{2 s}}=f_{2 s}(\beta) \\
\sum_{n=1}^{\infty} \frac{1}{V_{n}^{2 s}} & =\sum_{n=1}^{\infty} \frac{1}{\left(\beta^{-n}+\beta^{n}\right)^{2 s}}=g_{2 s}(\beta)
\end{aligned}
$$

and the results follow from Lemma 2 and 3. Let $\alpha \beta=-1$. Then we have

$$
\begin{aligned}
(\alpha-\beta)^{-2 s} \sum_{n=1}^{\infty} \frac{1}{U_{n}^{2 s}} & =\sum_{n=1}^{\infty} \frac{1}{\left((-\beta)^{-n}-\beta^{n}\right)^{2 s}} \\
& =\sum_{n=1}^{\infty} \frac{1}{\left((-\beta)^{-2 n}-\beta^{2 n}\right)^{2 s}} \\
& +\sum_{n=1}^{\infty} \frac{1}{\left((-\beta)^{-(2 n-1)}-\beta^{2 n-1}\right)^{2 s}} \\
& =f_{2 s}\left(\beta^{2}\right)+g_{2 s}(\beta)-g_{2 s}\left(\beta^{2}\right), \\
\sum_{n=1}^{\infty} \frac{1}{V_{n}^{2 s}} & =\sum_{n=1}^{\infty} \frac{1}{\left((-\beta)^{-n}+\beta^{n}\right)^{2 s}} \\
& =\sum_{n=1}^{\infty} \frac{1}{\left(\beta^{-2 n}+\beta^{2 n}\right)^{2 s}} \\
& +\sum_{n=1}^{\infty} \frac{1}{\left(-\beta^{-(2 n-1)}+\beta^{2 n-1}\right)^{2 s}} \\
& =g_{2 s}\left(\beta^{2}\right)+f_{2 s}(\beta)-f_{2 s}\left(\beta^{2}\right)
\end{aligned}
$$

Proof of Theorem 3.

$$
\sum_{n=1}^{\infty} \frac{1}{V_{n}^{s}}=\sum_{n=1}^{\infty} \frac{1}{\left(\beta^{-n}+\beta^{n}\right)^{s}}=g_{s}(\beta)
$$

Proof of Theorem 4.

$$
\begin{aligned}
& (\alpha-\beta)^{-2 s} \sum_{n=1}^{\infty} \frac{1}{U_{2 n-1}^{2 s}}=g_{2 s}(\beta)-g_{2 s}\left(\beta^{2}\right) \\
& \begin{aligned}
(\alpha-\beta)^{-(2 s-1)} & \sum_{n=1}^{\infty} \frac{1}{U_{2 n-1}^{2 s-1}} \\
& =-\sum_{n=1}^{\infty} \frac{1}{\left(\beta^{-(2 n-1)}+\beta^{2 n-1}\right)^{2 s-1}}
\end{aligned}
\end{aligned}
$$

$$
=-g_{2 s-1}(\beta)+g_{2 s-1}\left(\beta^{2}\right)
$$

Fibonacci sequence $\left\{F_{n}\right\}_{n_{2} 1}$ and Lucas sequence $\left\{L_{n}\right\}_{n_{2}}$ are defined respectively by $F_{n+2}=F_{n+1}+F_{n} \quad(n \geq 0), \quad F_{0}=0, \quad F_{1}=1$, $L_{n+2}=L_{n+1}+L_{n} \quad(n \geq 0), \quad L_{0}=2, \quad L_{1}=1$, and written as

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad L_{n}=\alpha^{n}+\beta^{n} \quad(n \geq 1)
$$

where $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2$.
Corollary. The numbers

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2 s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{n}^{2 s}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{2 n-1}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n}^{s}}
$$

are transcendental for any positive integer s.
Remark. In the special case of $s=1$, these results are proved in [4] by direct calculation without using the tables in [10] quoted above.

References

[1] B. C. Berndt: Ramanujan's Notebooks Part III. Springer (1991).
[2] J. M. Borwein and P. B. Borwein: Pi and the AGM - A study in analytic number theory and computational complexity. Johon Wiley (1987).
[3] D. Duverney, Ke. Nishioka, Ku. Nishioka, and I.

Shiokawa: Transcendence of Jacobi's theta series. Proc. Japan Acad., 72A, 202-203 (1996).
[4] D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa: Transcendence of Jacobi's theta series and related results. Number Theory-Diophantine, Computational and Algebraic Aspects, Proc. Cont. Number Theory Eger 1996 (eds. K. Györy, A. Pethö, and V. T. Sos). W. de Gruyter (to appear).
[5] T. Matala-Aho: On Diophantine approximations of the Rogers-Ramanujan continued fraction. J. Number Theory, 45 (2), 215-227 (1983).
[6] Yu. V. Nesterenko: Modular functions and transcendence problems. C. R. Acad. Sci. Paris, ser. 1, 322, 909-914 (1996).
$[7]$ Yu. V. Nesterenko: Modular functions and transcendence problems. Math. Sb., 187 (9), 65-96 (1996) (Russiam) ; English transl. Sbornik Math. 187 (9-10), 1319-1348 (1996).
[8] C. F. Osgood: The diophantine approximation of certain continued fractions. Proc. Amer. Math. Soc., 3, 1-7 (1977).
[9] I. Shiokawa: Rational approximation to the RogersRamanujan continued fractions. Acta Arith., L, 23-30 (1988).
[10] I. J. Zucker: The summation of series of hyperbolic functions. SIAM J. Math. Anal., 10, 192-206 (1979).

[^0]: *) 24 Place du Concert, 59800 Lille, France.
 **) Faculty of Environmental Information, Keio University.
 ***) Mathematics, Hiyoshi Campus, Keio University.
 ****) Department of Mathematics, Keio University.

