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The Rogers-Ramanujan continued f{raction
RR(q) is defined by
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RR@ =147 T 4T 4+717 + 0

which is known to have the expansions
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RR(g) = o
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(cf. [2 5 (3.4.9)]). Irrationality measures were

given by Osgood [8] and Shiokawa [9]. It is
proved in [9] that, for any integer d = 2, there is
a constant C = C(d) > 0 such that

) 5> e

for all integers p, ¢ (= 2), where B = ylogd .
Matala-Aho [5] obtained some higher degree irra-
tionality results. An example of Theorem 1 in [5]
is RR((/5 — 1)/2) & Q(/5).

In this note we first prove the following.

Theorem 1. The Rogers—Ramanujan con-
tinued fraction RR (q) is transcendental for any
algebraic number ¢ with 0 < |g| < 1.

The proof is a simple application of Lemma
1 and 2 below, which are proved in the same
manner as in [3]. Lemma 2 is a straightforward
consequence of a recent theorem of Nesterenko
on modular functions ([6] and [7]).

As usual we set for lql <1

E,(¢9) =1—24 ;lal(n)q",
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where o,(n) = >d*
dln
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Let K= Q(E,, E,, Ep).

Lemma 1 ([4]). Let y = y(q) denote any one
of 6, 6, and 6, Then the functions 7 (¢"),
0 @), 7 @), y@), vy (¢*), and y” (¢") are
algebraic over K for every positive integer k,
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d
where “° denotes the derivation qd—q'

Lemma 2 ([4]). Suppose that « is an algeb-
raic number with 0 < |a| < 1. If a nonconstant
function f is algebraic over K and defined at a,
then f(a) is transcendental.

Proof of Theorem 1. Let
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(see [1; p. 85]). Applying Lemma 1 and 2 to the
function f(g) = 1 (q) /7 (g®), we see that, for
any algebraic number ¢ with 0 < |g| < 1, f(q) is
transcendental, and so is F(g) from the formula
above.

Now we give further examples of continued
fractions whose transcendence can be easily de-
duced from Lemma 1 and 2. For any algebraic
number q¢ with 0 < |q| < 1, the following con-
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tinued fractions (i), (ii), and (iii) are transcenden-
tal:
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0 1 q q q
1+1+q+1+q2+1+q + -
_ 0(1/2)

241/803 @

(see [1; p 221, Entryl(l)])4 ]
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For, 1fvlv/§put
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then 1 26,9
Vo6,(¢H
(see [1; p. 221, Entry 1 (ii)]).
1 q+ q2 q2+ q4 q3 + qS
G T4 1T +7 1T + 1 +-
n(@n(g®’
@@’

(see [1; p. 345, Entry 1)).

Next, we prove the transcendence of recip-
rocal sums of some binary linear recurrences.
Our results below generalize those obtained in
[5].

Let k = 6;(¢q)/0;(g). Then
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K: = = 50,0,
f° Ja-Ha-d 27
ik 7 6.(g)

(see [2;(2.1.13), (2.3.17))).
Lemma 3. Let s be a positive integer and
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Then f£,5(q), f,5(@"), 9,(g), and g,(g*) are algeb-
raic over K.

Proof. By Table 1(i) in [10], f,; (¢) can be
written as a polynomial of k, K/ 7w, E /7w with
rational coefficients, and so f,,(q) and f,,(¢°) are
algebraic over K by Lemma 1. Similarly, g,,(q),
9::(@"), 95—, (@), and g,,_,(¢") are algebraic over
K by Table 1(ii), (vi) in [10].

Let @ and B be algebraic with a # 8 and ||
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< 1. Put an _ Bn
Un=——a—B’ Vn=a +B.
Theorem 2. If af = £ 1, then the numbers
oo 1 oo 1
Z 2s”? Z 2s
n=1 U, n=1V,

are transcendental for any positive integer s.

Theorem 3. If @8 = 1, then the number
= 1
n=1 I/'nS
is transcendental for any positive integer s.
Theorem 4. If o8 = —1, then the number
i 1
2
n=1 Uy,_,

is transcendental for any positive integer s.
Proof of Theorem 2. If a8 = 1, then

‘8) - nwl Ul:zs - i1 (‘B ' B 23 - f2$(.B)
n§l st - § (B—” + B )Zs = 92s(.3),

and the results follow from Lemma 2 and 3. Let
aB = —1. Then we have
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Proof of Theorem 3.
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Proof of Theorem 4.
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= = goi(P) + gZS-l(ABZ)'
Fibonacci sequence {Fn}n21 and Lucas sequ-
ence {L,},  are defined respectively by

Fn+2=Fn+1+Fn (nZO), F0=0, F1=1,
L,,=L,,+L, n=20), L,=2, L, =1,
and written as
an_Bn n n
Fn=“a—rg‘, L,=a"+8" (n=1),

where a = (1 ++5)/2, = (1 —+/5)/2.

Corollary. The numbers
= 1 » 1 © 1 =1
2o X X X
n=1 Fn n=1 Ln n=1]~72n_1 n=1L2n

are transcendental for any positive integer s.
Remark. In the special case of s = 1, these

results are proved in [4] by direct calculation

without using the tables in [10] quoted above.
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