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1. Introduction. Let R be a domain (com-
mutative or not) and R[x] its polynomial ring.

Let f(x) a,x g(x) bx be elements
=0 j=0

of R[x]. (This notation for the coefficients of
f(x) and g(x) will be followed in the absence of
explicit mention.) It is an elementary exercise to
prove that if f(x)g(x) 0, then aib 0 for ev-
ery i and j, since either f(x) 0 or g(x) --O.
(Of course the converse always holds.)

E. Armendariz ([1], Lemma 1) noted that the
above result can be extended to the class of re-
duced rings, i.e., rings without non-zero nilpotent
elements. In order to study additional classes of
rings having this property we introduce the fol-
lowing definition.

1.1. Definition. A ring R is said to have
the Armendariz property (or is an Armendariz

ring) if whenever polynomials f(x)= aix,
i=0

g(x) bx R[x] satisfy f(x) g(x) =0, we
=0

have ab 0 for every and j.
By a ring we mean an associative ring with

identity. However, the assumption of the exist-
ence of identity can be omitted in many places.
Many remarks are thus valid in the context of
"rings" and subrings (i.e., subrings which may
not inherit the identity of the over-ring). For de-
fining left/right zero-divisors, we shall refer to
([4], p. 88).

In addition to reduced rings, there are large
classes of rings which are Armendariz. If R is a
commutative P.I.D and A an ideal of R, then R/A
is Armendariz (Theorem 2.2). If K is a field and
V is a vector space over K, then the ring K
(+) V (see 1.2 for notation) is an Armendariz
ring (Corollary 2.9).

For constructing examples of both Armen-
dariz rings and non-Armendariz rings, we shall
use the following principle of idealisation due to
Nagata ([6], p.2).

1.2. Let R be a commutative ring and M an

R-module. The R-module R @ M acquires a ring

structure where the product is defined by
(a, m)(b, n) (ab, an + bin).

We shall use the notation R (-+-) M for this ring.
If M is not zero, this ring is not reduced, since M
can be identified with the ideal 0 ( M which has
square zero. (It seems appropriate to call this
ring as "R Nagata M").

We shall also need the following variants of
the construction in 1.2.

1.3. Let R be a commutative ring and h"
R--* R a ring homomorphism. Let M be an

R-module. On modifying the definition in 1.2 to
(a, m)(b, n) (ab, h(a)n + brn),

we get a (non-commutative) ring structure on
R ( M which we shall denote by R (+)M.

1.4. Let R be a ring and A an ideal of R.
The factor ring R R/A has the natural struc-
ture of a left R-, right R- bimodule. Denote
a + A R for each a R. We use this struc-
ture to define a ring structure on R ( (R/A) as

follows:
(r, ) (r’, ’) (rr’, ra" + ar’).

We denote this ring by R (-+-)R/A. Its prop-
erties are similar to those of R (+) M.

2. Rings which have the Armendariz proper-
ty. It is easy to see that subrings of Armendariz
rings are also Armendariz. However, factor rings
need not be so (see 3.3). If {R}ii are Armendar-
iz, so is II R. We begin with examples of famil-
iar non-reduced rings which are Armendariz.

2.1. Proposition. For each integer n,Z/nZ
is an Armendariz ring, which is not reduced
whenever n is a natural number which is not
square free.

Proof We first consider the case n p
a prime. Denote by f(x), g(x) the cosets of f(x),
g(x) (modpZ[]), respectively. Assume f(x)g(x)

0, i.e. plf(x)g(x). Since p is a prime, it fol-
lows that f(x) prf’(x) and g(x) pSg’(x) for
some f’ and g’ satisfying the conditions that the
g. c. d. of the coefficients of f’ (also of g’) is not
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divisible by p. Clearly r-+- s > rn. It follows that
ij 0 for every and j, showing that Z/pmZ
is Armendariz.

Let n be a natural number. Then n "-,-1 ,-2

p’ where Pk’s are primes. By the Chinese re-
mainder theorem,
z/z z/pz z/pz z/p?z.

Since each Z/pk Z is Armendariz, it follows that
Z/nZ is Armendariz.

The following generalisation of 2.1 has a
similar proof.

2.2. Theorem. If R is a commutative P.I.D
and A an ideal of R, then R/A is Armendariz.

2.3. Theorem. Let R be a domain, A an
ideal of R. Suppose R/A is Armendariz. Then R
(4-) R/A is Armendariz. (See 1.4 for definition
of R (4-) R/A.)

Proof. Let f(x), g(x) be elements of {R
(+) R/A} [x], where

m

f(z) (a, )x (fo (x), f (x)) and
i=0

g(x) E (bj, zT)x= (go(X), gl(x)).

If f(x)g(x) 0, we have (f0(x), fl(x)) (go(X),
gl(x)) 0. Thus we have the following equa-
tions"

{o(X)go(x)=O (I)

(z)g (x) + f (x) go (x) 0 (II)
Case 1. fo(X) 0. Then (II) becomes

fl(x)go(X) 0 over R/A. Since R/A is Armen-
dariz, it follows that ub 0 for eyery and j.
Also fo(X) 0 implies that a 0 for all i. We
conclude that (ai, a) (b, 7) (ab, aiv + uibj)

0 for every i and j.
Case 2. go(W) 0. This case is similar to

case 1.
As a special case of the above proposition,

we have the following corollary.
2.4. Corollary. Z (-+-) Z/nZ is Armendar-

iz for each integer n.
It follows from 2.3 that if R is a domain

then R (+) R is Armendariz. This result can be
extended to reduced rings. The following prop-
erties of these rings will be used’ i) If a, b are
elements of a reduced ring then ab--0 if and
only if ba 0. ii) Reduced rings are Armendariz.
iii) If R is reduced, then so is the ring R[x]. We
shall also identify {R (-+-)R}[x] with the ring
R[x] (+) R[x] in a natural manner.

2.5. Proposition. Let R be a reduced ring.

Then the ring R (+) R is Armendariz.

Proof. Let f(x) (fo(X),(x)),g(x) (go(x),
gl(x)) be elements of {R (+) R} Ix] satisfying

f (x) g(x) O.
m

Write f(x) (ai, u)x, and g(x)
rt i=0

(b, v)x, with corresponding representations
1=0
for f(x), g(x) (for k 0,1).
Now we have

(A) fo(X)go(X) O.
(B) fo (x) gl (x) -+- f (x) go (x) 0.

Since R[x] is reduced, (A) implies
(C) go(X) fo(X) 0.
Multiplying equation (B) by go(X) on the left and
using (C) we get go(X) fl (x) g0(x) 0. This im-

plies (fl(x)g0(x))2 0 and so (since R [x] is re-

duced)
(D) f (x)g0(x) 0.

This implies (on account of (B)) that

(E) fo(x)gl (x) 0.
Now (A), (D) and (E) yield (since R is Armendar-
iz)
abj O, av 0 and ub 0 for each and j.
It follows that
(ai, ui)(be, re) (abj, aiv q- ub) 0 for each
andj.

The following generalisation of 2.5 has a

similar proof.
2.6. Proposition. Let R be a reduced ring

and A an ideal of R such that R/A is reduced.
Then R q-) R/A is Armendariz.

2.7. Remark. Recall that a ring R is strongly
regular ([3], {}4) if for each element a in R, there
exists an element b in R such that a a"b. A
ring is strongly regular, if and only if it is (von
Neumann) regular and reduced. If R is a strongly
regular ring, then for each ideal A of R R/A is

strongly regular and reduced. On applying 2.6
we get the following result: if R is a strongly reg-

ular ring, then for each ideal A of R, the ring

R (+) R/A is Armendariz.
We conclude this section with a few more

examples of Armendariz rings.
2.8. Proposition. Let K be a field, h :K

K a field monomorphism, and V a K-vector
space. Then the ring K (+)h V is Armendariz.

Proof. The map h induces a natural ring

homomorphism h:K[x] --* K[x]. We have the
torsion free "polynomial module" V[x] over
K[x]. We identify {K (q-)h V}[x] with K[x]
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(+) V[x]. (See 1.3 for definitions).
Now let f (x) g(x) {K + h V} [x] satisfy

f (x) g(x) 0. Write f(x) and g(x) as f(x)
(fo(X), fl(x)) and g(x) (go(X), gi(x)), where
fo(x), go(X) K[x] and fl(x), gl(x) belong to
the polynomial module V[x].
Then f(x)g(x) O (fo(X), fl(x)) (go(X), gl (37))
=0

(fo(x)go(X), h(fo(x))g(x) + go(x)f(x)) 0
fo(X)go(X) 0 and

h (fo (x))g (x) + go (x) fl (x) 0.
Since the cases f(x)= 0 or g(x)= 0 are

trivial, we look at other cases.
Case 1. fo(X) 0 but fl(x) =/= 0. Then

h (fo (x)) 0 ==> go (x) fo (x) 0 which gives go (x)
0 since V[x] is K[x]-torsion free.
Case 2. go(X) 0 but gl(x) 4: 0. Then

h (fo (x)) gl (x) 0. This implies that h (fo (x))
0 by an argument similar to that in Case 1. Since
h is a one-one map it follows that fo(X)= O.
Therefore in either of the cases f(x), g(x) must
be of the types f(x) (O, fl(x)), g(x) (0,
gl (x)). If follows that K (-+-) h V is Armendariz.

2.9. Corollary. If K is a field and V a

K-vector space, then K (+) V is a commutative
Armendariz ring which is not reduced if V 4= 0.

Proof. Let h be the identity map in Proposi-
tion 2.8.

3. Rings which do not have the, Armendariz
property. In this section we shall give a few ex-
amples of rings which are not Armendariz.

3.1. Remark. Full matrix rings of degree
>_ 2 over any ring with identify are non-
Armendariz. Consider the polynomials f(x)=
EleZ + Ell g(x) EllX- E.1. Then f(x)g(x)

0 but EllEll Ell =/= O.
3.2. Example. Commutative rings need not

be Armendariz. Consider the polynomial f(x)
(4 0) A- (4 1)X over the ring (Z/8Z (-4-)
Z/8Z). The square of this polynomial is zero
but the product (4 0)(4, 1) (0, 4) is not
zero.

3.3. Remark. The ring considered in 3.2
is a factor ring of an Armendariz ring, namely
the ring of polynomials in many variables over Z.
It is also a factor ring of Z (+) Z/8Z which is

Armendariz by 2.4. Thus factor rings of Armen-
dariz rings need not be Armendariz.

4. Other classes of rings. In this sectio.n
we shall record a few results which connect

Armendariz rings to some other classes of rings.

We introduce the following definition.
4.1.. Definition. A ring R is a left McCoy

ring if whenever g(x) is a right zero-divisro in

R[x] there exists a non-zero element c in R such
that cg(x)= 0. Right McCoy rings are defined
dually. A ring is a McCoy ring if it is both left as
well as right McCoy.

4.2. Remark. It was proved by McCoy [5]
that commutative rings have the above property;
for an inductive proof of this result see [7]; see

also [2]. If T is a ring with identity, the matrix

ring Me(T) is neither left nor right McCoy.
(There do not exist nonzero matrices C, D satis-

fying Cg(x) --0 and f(x)D--0 for the polyno-
mials considered in Remark 3.1.)

4.3. Remark. Let R be an Armendariz
ring and assume that g(x) is a right zero-divisor
in R[x]. Then there exists a non-zero polynomial
f(x) R[M such that f(x)g(x) 0. Since R is
Armendariz, ab 0 for each i and j. Since

f (x) =/= O, a =/: 0 for some t; clearly atg(x) O.
Thus R is left (similarly right) McCoy. This

shows that Armendariz rings are McCoy. The
converse is not true; commutative rings are
McCoy, as noted in 4.2, but we have examples of
commutative non-Armendariz rings.

4.4. Definition ([3], 4). A ring R is semi-

commutative if it satisfies the following condition:

whenever elements a, b in R satisfy ab 0, then
acb 0 for each element c of R.

4.5. Remarks and questions. The class of

commutative rings and the class of reduced rings

are contained in the class of semi-commutative
rings. Both these (smaller) classes are trivially
stable under the formation of polynomial rings.

A ring R is called normal if every idempo-
tent in R is central; semi-commutative rings are
normal ([3], Lemma 5). Against this background
consider the following "stability" assertions:

(i) R normal =:> R[x] normal;
(ii) R semi-commutative =:> R[x] semi-commu-
tative; and
(iii) R Armendariz :=> R[x] Armendariz,

We remark that (i) easily follows from an ex-

tension of ([1], Corollary 1) to normal rings. (It
may be a known result but we have not seen a
proof of (i) in the literature).

We do not know whether (ii) and (iii) are
true. In view of these questions, the following
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proposition may be of some interest.
4.6. Proposition. If R is a semi-commu-

tative ring which is Armendariz, then R[x] is

semi-commutative.

Proof Let f(x), g(x) be polynomials in
R[x] satisfying f(x)g(x) 0. Let h(x)

k
CkX R[x]. Since R is Armenderiz and

k=O

f(x) g(x) O, ab--0 for each and j. Since
R is semi-commutative ackb--0 for each i, j
and k. Hence f(x)h(x)g(x)-O. This proves
that R[x] is semi-commutative.

4.7. Remark. The concepts introduced
and studied in this note have extensions in the
context of modules, graded rings and graded
modules. Related concepts can also be defined for
power series rings. These generalisations will be
carried out elsewhere.

Acknowledgement. We thank the referee
for a careful reading of the manuscript, which led

to improvements in presentation.

References

[31

E. Armendariz: A note on extensions of Baer and
P.P. rings. J. Austral. Math. Soc., 18, 470-473
(1974). MR 51, # 3224.

A. F’orsythe: Divisors of zero in polynomial rings

Amer. Math. Monthly, 51t; 7-8 (1943). MR 4, #
129.

Y. Hirano and H. Tominaga: Regular rings,

V-rings and their generalizations. Hiroshima

Math. J., 9, 137-149 (1979).
[4] N. Jacobson: Basic Algebra. W. H. Freeman and

Company, vol. 1, San Francisco (1974).
5 N.H. McCoy: Remarks on divisors of zero. Amer.

Math. Monthly, 49, 286-295 (1942). MR 3, #
262.

[6 M. Nagata: Local Rings. Interscience (1962).
[7] W.R. Scott: Divisors of zero in polynomial rings.

Amer. Math. Monthly, 61, 336 (1954). MR 15, #
672.


