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Multifractal Spectrum of Multinomial Measures
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1. Introduction. Multifractal theory is one
of the most important branch in the fractal
theory. There are numerous papers on multifrac-
tal theory. See, for example, Cawley and Mauldin
[2], Edgar and Mauldin [3], Falconer [4], Feder [5]
and Mandelbrot [6]. However, there are few
works on the classification of the probability me-
asures by their multifractal spectrum f(c0. It
seems very hard to investigate such problems for
general probability measures. In this paper we
deal with multinomial measures, which is the
most simple one, and clarify the relationship of
two multinomial measures with an identical mul-
tifractal spectrum f(c). Throughout this paper
we use the convention 0/0 0.

2. Preliminaries. We first summarize some
fundamental definitions and results in multifrac-
tal theory. Our approach essentially follows that
of Falconer [4].

Let I-- Io,o-- [0, 1] and

i,= [g_ j+l

p,,, P’*
),j 0,1 --2

pn-1
1]pn

for n 1, 2, 3,
Definition 2.1. Let/2 be a probability measure

on I. For oo < c oo and oo q < oo, we

define

and

No-.(a)- # (I.,.(I,) >_ (p-")"},

So-. (q) E /2 (I,j)
q

12 (In,t) >0

log{No-,(a + e) No-,(a e)},f(a 

r(q) lirn logSp-,(q).
n-oo logp-"

Here log 0 oo We say f(o) the multifractal
spectrum of/2 and r(q) the mass exponent of/2.

Definition 2.2. Let p >-- 2 be a positive inte-
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ger and r (ro, r1, ’p_l be a random vector
such that 0 < rl < 1 for O, 1, p 1. The
probability measure/2p.r on I defined by
(1) /2o,(In+l,pj+l) rl/2,(I,,)
for n O, 1, 2 ,j=0,1 p"-- l, l-- O,
1,..., p 1, is said to be a multinomial measure.

The following result is well-known in mul-
tifractal theory.

Proposition A. For every multinomial mea-

sure/2p,r, the multifractal spectrum f(cr) exists and

satisfies the equality
(2) v(q) sup {f(a)- qa}.

0<

For go,r, we have n.0. 1 PS-,(q) E (to r %_;1) aoa
(rg + + +

and hence

(3) r(q)
logS-,(q) log(r + r + + r_1)

logp-" logp
Further we can calculate the multifractal spec-
trum f(a(q)) by use of the so-called Legendre
transform" flogf
a(q) r’(q)

(Er)ogp
logNr qNr[logr

f(a(q)) r(q) + qa(q) lo- Zrlogp
3. Result. We now state our result. Let

p, and p,,, be two multinomial measures. We
denote their multifractal spectrums by f,r(a) and

f,,, (a), respectively and also denote their mass
exponents by %,r(q) and %,,r,(q), respectively.

Theorem. Assume that neither P,r nor
is the Lebesgue measure. Then f,r (a) ,,r, (a)
if and only if there exist a unique positive integer u
and a unique random vector s (So, s,..., s,_)
satisfying the following conditions"
(C-1) p and p’ are expressed by

=u"p’-u
with some mutually prime numbers n and m.
(C-2) r(i=0, 1,...,-1) and r’ j= 0,1,

p’ 1) are,represented in the form
r,- s, s,..., s,, il, i,..., i, {0, 1,..., u- 1},
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r
The sufficiency immediately follows from the

definition of multinomial measures. In the follow-
ing we prove the necessity. We first notice that
the condition fp,r (a fp,,r, (a implies ,,,,. Hence, by (3), we have

P--1 P’--I , logp

We now define- - ’- zlor;(z) r e h(z) r = e
i=O i=O

for z C. Evidently and fi are entire functions
with no pole and

#(z) {(z))o,o,.
We first state several elementary lemmas in

function theory.
Lemma 3.1. The functions (z and h (z

have (common) zeros and the order of them s equal
to 1.

Proof We represent the function O(z) in the
form n

(4) O(z) n z Gz,say.

Then, denoting the order of (z) by , we have
by Stirling’s formula

nlogn
limsup,_ logll/c]

nlogn
limsup 1.

Hence, if we suppose that if(z) has no zeros, then
there exists a polynomial + az of degree 1
such hat

(z) e+ z=e n
Comparing with (4), we have

e p,

for every n. Hence we obtain r =r
r_1. This contradicts the assumption, l

Lemma 3.2. logp/logp" s a raHonal number.

Therefore { (z) } {h (z) } n for some positive nte-
gets m and n wth (m, n) 1.

Proo Since (z) and h(z) are entire func-
tions with zeros but with no pole, we have

2i 2i h() d

and

g’(z) ah’(z) (h(z)) a-x

g(z) dz
(h(z)

’(z)
dz- a h(z) dz.

Hence we obtain - m’/n’. Obviously we can
choose positive integers m and n with (m, n)

1 so that m/n m’/n’. I
Lemma 3.3. Let g( z ) g( x + iy )

(x+ iy) logrie Then there exist M> 0 and c, c2
0 such that

0 < C < [g(x _2ff iy)[ < c < oo

forM<x<M+ 1.
Proof Let rmax rnaxoe_ re and

maxr =/= rmax k" Since
g(x + iy) exlgrmax Z ex(logr’--logrmax)e ivlgr’,

taking M large enough so that i 2peM(lg-lgrmx),
there exists c 0 such that Ig(x + iy)[ Cl
0 for x > M. Evidently ]g (x + iy)[ is bounded
from above for M < x < M + 1. 1

Lemma 3.4. Let 2 { (x, y) C" M < x
< M + 1}. Then logg(z) is almost periodic in

Proof By the definition of g(z), it is clear
that g(z) is almost peri.odic in Q1. Since

logg(z + Jr) logg(z)
(log[g(z + it)l-log[g(z)l)

+ i(argg(z + iv) argg(z)),
by Lemma 3.3, there exists co > 0 such that

Ilogg(z + vi) logg(z)[ < e
for z satisfying Ig(z)l > Co. Hence logg(z)is
almost periodic. 1

Lemma 3.5. If a(z) is an almost periodic

function on Q1 satisfying [a(z)[ < C < o for z
a(z)1, then e s also almost periodic on Q1.

Proof Since
ea(z+iv) ea(z) ffta(z+iv)+ia(z+iv) ’.,a(z)+ia(z)

(ea(z+ir) ea(z)) ei3a(z+r)
+ e"() (e(+) -e

we have
a(z+ iv) a(z)[ (z+iz)

e <-[e
+ ea(Z)[ei(3a(z+)-3a(z))_

eCt + 2eCsint.
This completes the proof.

We now state a key lemma.
Lemma 3.6. The functions g(z) and h(z) are

represented in the form
for some positive integers m" and n, where 7" is a
closed contour not containing zeros on it. Put (5)
c logp/logp’. Since g(z) (h(z)) a, we have

g’(z) ah’ (z) (h(z)) a-. (6)

g(z) ae )
N -,zh(z) ae
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where

Proof By Lemmas 3.1, 3.2 and Hadamard’s
theorem, g and h are represented in the form

g(z) ei+iz 1-I (1 )k z

h(z) e’+i 1-- ee,

Furthermore, since zeros of g coincide with those
of h, we have

am- an," am- an," km k’;n.
Hence
(7) g(z) (I(z)) , h(z) (I(z))
where

I(z) e+z 1
z

for some , 2, and ki, 1, 2, By Lemma
3.4, logI(z) is almost periodic on . Hence, by
Le’mma 3.5, I(z)is also almost periodic on 1.
Then it is well-known that there exists a Dirich-
let series corresponding to I(z)

I(z) Nae a lim-- I(z + i)ead.
j=l r a

By (7) and the fact that (m, n): 1, we have
I(z) ga (z)h (z) for some integers a, . We
also have 1 "+: g, hlim (z) (z) eZdz 0

except for a finite set of by a theorem of
Riemann-Lebesgue’s type for almost periodic
functions (see [1, p. 22, Lemma]). Therefore we
obtain I(z) 1 ae- for some positive inte-
ger N. l

Proof of the necessity. It suffices to show
that there exists a unique random vector s (s0,
Sl,..., S_l) such that

/u-1 tn /u-1

for all t. We have only to prove in the case
0 > logr0 logr 2 2 logr_1.

Multiplying ent to both sides of (5), we get

e (n2t+ log ry)
N

(2 i- 2,)
aje

Therefore,

ai # {j" n2 + logr 0}
In the same manner we have by (6)

a # (j" m2 + logr- 0).
Consequently, noticing that n and m are relative-
ly prime, we know that a is a positive integer.

Putting z 0 in (5) and (6), we have p (a)
and p= (a)U, respectively. Let u a.
Evidently p un, p= u and

N u-1

I(t) Z ae-t Z e-;t,
j=l i=o

where for some j. Let logs, then
we know that0 s 1 u-=o s 1 and

g(t) (oetls’)"-
(joU-1)m()mth(t)- e’’ Zs

from which, the necessity follows.
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