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Abstract" Let be an odd prime. In [2], Yamamoto gave a condition for (, )-
extensions K of Q, under which the Iwasawa invariants /(K) and /(K) vanish. In this
note, we shall give a condition for (, )-extensions K of Q, which is weaker than the condi-

tion given in [2], under which we have/e(k) --/,(k) -0 for any subfields k of K with [k’Q]. Our proof is based on Greenberg’s original idea (cf. [1]), which is more elementary than
that in [2], using the capitulation of the -part of the ideal class group of k in the initial
layer of the cyclotomic Z-extension of k to assure/(k) (k) 0.
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1. Introduction. Throughout the paper, we [(, ] --Xr-1
and so A(k)/A(k)- X/X-fix an odd prime number . For a cyclic exten- G(fc/k) as G-module. Assume that q0IB(k)

sion k of Q of degree z, we denote by A(k) the is surjective. Then A(k) B(k)A(k) -1. Since
-primary part of the ideal class proup of k and the order of is and the order of A(k) is a
B(k) the subgroup of A(k) consisting of ele- power of , this implies A(k) --B(k). The con-
ments which are invariant under the action of the verse is trivial.
Galois group G(k/Q). Let pl, p., ’’, Ps be the Corollary 1.2. Assume that qo B(k) is

prime numbers which are ramified in k/Q and surjective. Then an @leal a of k whose class belongs

letpi bethe prime ideal of k lying over pi. Then [//k
it is easy to see from the genus theory that B(k) to A(k) is principal if and only if a

is an -elementary abelian group of rank s- 1 Proof We have /- / because A(k)
generated by cl(p), cl(p2)," , cl(Ps). Let k B(k).
(resp. /) be the -part of the Hilbert class field 2. Results. For a prime number p con-

(resp. genus field) of k. Then we have the iso- gruent to one modulo , we denote by kp the uni-

morphism A(k)--% G(/k) and hence the surjec- que subfield of Q(p) of degree , where is a
tire homomorphism primitive p-th root of unity. Let q be another

//k prime number congruent to one modulo . Then(p’A(k) cl() \] G(//k)
a k,kq is an (, g)-extension of Q and has - 1

through the Artin map. subfields which are cyclic extensions of Q of de-
The next lemma and corollary permit us to gree , in which both p and q are ramified. Let k

handle the capitulation problem in k by computa- be one of such subfields and p (resp. pq) the
tion in the Galois group G(k/k). prime ideal of k lying over p (resp. q). Then

Lemma 1.1. We have A(k) B(k) if and B(k) (cl(p), cl(pq)) and B(k) g. Note
only if the restriction map q B(k) B(k)--* G(/k) that kkq is the g-part of the genus field of k/Q.
is surjective. ( kpkq / k )Proof. Let (- G(//Q), X- G(fc/k) and G Since pp is ramified in k/Q, p is trivial

G(k/Q)- (a}. Then G acts on X by an in-
k)[kq/Q\ ()ner automorphism. Since at least one prime ideal

if and only if p is trivial. Let
e
denote

is totally ramified in k/Q, the group extension the g-th power residue symbol. Then the follow-
1 X--+ G--+ G--+ 1 splits. Hence we see that ing lemma is an immediate consequence of Lemma

1.1.
1991 Mathematics Subject Classification, Primary

11R23. Lemma 2.1. We have IA(k) l-- g if and
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Now let Q1 be the initial layer of the cycloto- we have
mic Z#-extension of Q, namely the unique sub- {kpkq/k_ i-1 {kpkq/k_ -x

field of Q(e) of degree . Then kQ is the ini-
xi

tial layer of the cyclotomic Ze-extension of k. and hence we can conclude that O Oq is principal
The following Theorem 2.2 is our main theorem in k.
which gives a sufficient condition to the fact that Our goal is to show that both p and Oq be-
the natural map A(k)A(kQ1) induced from come principal in kQ. For that purpose, we look
the inclusion map k kQ is zero map, leading for another relations between cl(p) and cl(pq) in

to the vanishing of the Iwasawa invariants e(k) kQ1 using subfields of K kkqQ1. In this case,
and (k), as proved in the next paragraph, we identify G(k/Q) with G(K/kqQ), G(kq/Q)

Theorem 2.2. Let p and q be distinct prime with G(K/kQ) and G(Q1/Q) with G(K/kkq)
numbers congruent to one modulo satisfying canonically. We consider a, v and as elements

() 4= 1, () 4= 1, q l(modg2). Let x, y,

pqZ 1 (mod g). If xyz 4= --1, then for any sub-

of G(K/Q) and identify G(K/Q) with F by
the correspondence

Illa 0 v 1 r/- 0
0 0 1

field k of kpkq of degree which is different from kp In this situation, the above k corresponds to

and kq, the order of A(k) is and the map A(k) -- (av r}. Let F be a subfield of kQ1 of degree

A(kQI) is trivial, in which three primes p, q and # are ramified.

Corollary 2.3. Let p, q, x, y and z be as in Such F corresponds to (az-, at for some t

Theorem 2.2. Ifxyz 4= 1, then for any subfield k F. Let 3, 3q and e be the prime ideals of F

of kkq of degree , the Iwasawa invariants ,e(k) lying over p, q and respectively. Since p
and te(k) are both zero. and 3q--pq in kQ, a relation between 3p, q

Remark. The condition of Theorem 1 in [2] and 3e in F shifts to the same relation between

means xyz- 0 which is a special case of xyz 4= p, pq and 3e in kQ. Note that K is the genus

--1. field of F/Q because K/F is an unramified

3. Proof Let p, q, x, y, z be as in Theo- (g, #)-extension and B(F) #e We start

rein 2.2 and put

g p q
The condition in Theorem 2.2 means that G(k/Q)

(or), G(kq/Q) (v), G(Q1/Q)- (7) and

-( -v-Y -7q g p
We identify G(k/Q) with G(kkq/kq) and
G(kq/Q) with G(kpkq/k). We consider a and z-
as elements of G(k,kq/Q). Let k be a subfield of

from the matrix with entries in Re

M-- 1 --y
--z 1

and put

Ii-:-zt--x 1 IM(i, t) 1 (x + t-) y

z 1 (1 + yi-) t

(K/F)Columns of M(i, t) correspond to /,

]ckq of degree g which is different from kp and

kq. Then G(kkq/k)- (avi) for some F;. q ] and 3 ]" To describe relations

We have ]A(k)[--g from Lemma 2.1. Since between 3, 3q and 3e, we construct matrices
B(k) (cl(p), cl(pq)) and B(k) , there N(i), (i) below using Lemma 1.1 and Corollary
exists a non-trivial relation between cl(p) and 1.2. Namely, we choose a non-zero column vector

cl(pq). We can find this relation using Corollary a F such that M(i, Oa 0 if rank M(i, t)
1.2. Namely, since 2 and put a 0 if rank M(i, t) 4= 2 and put

]tOp k,
[,)’p --v, This matrix describes relations between 3, q
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and Se in kQ1 because cpIB(F) is surjective if lates in kQ1. If remains prime in k, then
and only if rankM(i, t) 2. There are, moreov- Theorem 1 in [1] immediately yields /e(k)
er, two more relations between Sp, Sq and Se be- /e(k) 0. So we restrict our attention to the

xi
cause pp pq is principal in k and Se becomes case which splits in k. In this case, the follow-
principal in kQ1 as the class number of Q1 is ing lemma, which was given as a remark in [1], is

prime to . Adding to N(i) the matrix with two useful.
columns as N’ describing these relations, we

obtain

(i) (N N(i)), where N 1 0
0 1

Then we have

Lemma 3.2. Assume that splits completely
-1

in k and there exists a unit k such that
1 (mod #2). Then the capitulation of A(k) in an

intermediate field of the cyclotomic Z#-extension of
k implies the vanishing of/#(k) and fe(k).

Proof of Corollary 2.3. It is enough to show
Lemma 3.1. If rank/(i) 3, then A(k) that there exists a unit k such that e-1 1

capitulates in kQ. (mod [2) for k in which [ splits. The decomposi-
Proof of Theorem 2.2. Fix F;. First tion group of for kpkq/Q is generated by the

assume that z O. Then we let t and obtain
Frobenius automorphism because

from M(i, i) by fundamental row operations

(lOi+xyi/xi I kkqQ(pq)and its order is because--() :/:
01 y+i

\ /0 0 0 1. So there exists just one subfield k of k,kq of
Hence the rank of M(i, i) is 2 and we get the degree # in which # splits completely. Consider-
following submatrix N of/(i) ing the canonical isomorphism

( xi 0 + xyi + xi ) (Z/PqZ) x md pq (x md p, x md q)
ix 1 0 y + (Z/pZ) (Z/qZ) ,

0 1 1 we see that
Since det N :/: 0, we see that A(k) capitu- [kkq/
lates in kQ from Lemma 3.1. Next assume that ] av

z =/= 0 and let t--zi. Then we obtain from Hence G(kkq/k)- (iv-Y}. First assume that
M(i, zi)by fundamental row operations y =/= 0. Then, by letting i----y, we see that

-1 --xy

(1- xi- xy- z O ). Pp Pq () for some cr k and so p Xyq r
-Xyq qXyZ+0 x 1 for some unit of k. Since =- (mod )

0 0 0 and xyz :/: 1, we see that z has desired prop-
Hence we get again, similarly as above, a submit- erty. Next assume that y- 0. Then k kq. We
fix N of N(i) can find a unit in a similar manner. [-

xi 0 xi+ xy+ z- )N 1 0 1 References
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