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§1. Introduction. Fontaine and Mazur
have conjectured that there does not exist an
everywhere unramified p-adic representation of
the absolute Galois group of a number field with
infinite image.

Conjecture 1 (Fontaine-Mazur). If Kis a
number field, and p:Gal(X/K) — GL,(Q,) an
everywhere unramified representation, then the
image of p is finite.

This conjecture has been studied in [1], [2]
and [3].

Definition. A pro-p group G is called
powerful if G/G” (resp. G/G") is abelian for P
odd (resp. p = 2), where the line denotes topolo-
gical closure.

Conjecture 1 is equivalent to the following
(cf. [1]).

Conjecture 2 (Fontaine-Mazur-Boston). If
K is a number field and M /K is an unramified
pro-p extension of infinite degree, then the
Galois group Gal(M /K) is not powerful.

In [1], Boston pointed out that this conjec-
ture is closely related to the existence of unrami-
fied p-extensions of a certain type, and intro-
duced the following question.

Question (Boston [1]). Let K be a number
field, p an odd prime, and K(p) its p-class field.
Suppose that the class number of K(p) is divisi-
ble by p. Then is there always an everywhere
unramified extension M of degree p of K(p) such
that M is Galois over K and exp(Gal(M/K)) =
exp(Gal(K(p) /K))? The “exp” stands for the ex-
ponent of the group.

In general, the answer to this question is in
the negative. A counter example noted by Lem-
mermeyer can be found in Boston [2].

Concerning this question, Boston [1] noticed
that the truth of the Fontaine-Mazur conjecture
implies an affirmative answer, when K has an in-
finite p-class field tower. In the previous paper
[5], we proved some sufficient conditions for the

answer to Boston’s question for K and p to be
affirmative. In this article, we shall prove
another sufficient condition for the answer to the
question to be affirmative, and study the struc-
ture of Gal(K* (p) /K), where K“"(p) /K is the
maximal unramified pro-p extension.

§2 Main theorem. Let k£ be an algebraic
number field and p an odd prime. For a Galois
extension L/k, we denote by Ram(L/k) the set
of primes of k which are ramified in L/k. For a
finite set S of primes of k, let B,(S) = {a € k™|
() = a’ for some ideal a of k, and a € kqp for
any q of S}.

Theorem. Assume that the Galois extension
F/k satisfies the following conditions (1), (2),
and (3).

(1) Gal(F/k)
Z/pZ.

(2) Any prime of k above p is unramified,
and any prime contained in Ram(F/k) is decom-
posed in F/k.

(3) B,(Ram(F/k)) = k™.

If K/k is a p-extension such that F N K =
k and that Ram(F/k) € Ram(K/k), then the
answer to Boston's question for K and p is
affirmative.

We need the lemma below.

Lemma ([4; Corollary of Theorem 4]). Let
F/k be a Galois extension with the Galois group
isomorphic to Z/pZ X Z/pZ. Assume that
B,(Ram(F/k)) = k™. Then the following con-
disions (1) and (2) are equivalent.

(1) There exists a Galois extension L/F/k
such that Gal(L/k) is isomorphic to

H=<{z,ylz"=y"=2"=1,
Yr = Yz, xZ2 = 2X, Yz = 2
and that L/F is unramified.

(2) Any prime of k which is ramified in
F/k is decomposed in F/k.

Remark. H is a non-abelian p-group of
order p3, and the exponent of H is p. Therefore

is isomorphic to Z/pZ X
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H is not powerful.

Proof of theorem. By the preceding lemma,
there exists a Galois extension L/F/k such that
Gal(L/k) is isomorphic to H =<z, ylz’
=y’ =2"=1,yx = 2yz, 22 = zx, yz = zy> and
that L/F is unramified. By the assumption F N
K=kRam(F/k) < Ram(K/k), LK/K is un-
ramified and Gal(LK/K) is isomorphic to H. Let
M= K@P)KL. Then M/K()/K is unramified
and the degree [M : K(p)] is equal to p. Since
Gal(M/K) is isomorphic to a subgroup of the
direct product Gal(K()/K) X Gal(LK/K),
exp(Gal(M /K)) = exp(Gal(K(p) /K)). This co-
mpletes the proof.

Remark. If k is the rational number field
Q, then the condition (3) of Theorem is always
satisfied.

Example. Let k, (resp. k,) be the subfield of
QL) (resp. QL)) such that [k;:Q] =3
(resp. [k,: Q] = 3). Since 7% = 1(mod 181),
181 = 1(mod 7), k = Q F = k,k, p = 3 satis-
fies the assumption (1), (2), and (3).

Notation. For a number field K, K=K
and K" is the maximal unramified elementary
abelian p-extension of K.

Corollary. Let K/k be a p-extension which
satisfies the same assumption in Theorem. If
M /K is unramified p-extension and M containes
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K(Z), then the Galois group Gal(M/K) is not
powerful.

Proof. The proof 1is by contradiction.
Assume that Gal(M/K) is powerful. By the
proof of Theorem, there exists an unramified
Galois extension L,/K such that the Galois
group Gal(L,/K) is isomorphic to H = {x, y/|
xp=yp =z2=1, YT = xTYZ, X2 = 2T, Yz = 2Y,.
We claim that if G is powerful and N is an open
normal subgroup, then G/N is also powerful.
Since M © K® o L,, Gal(L,/K) = Gal(M/K)
/Gal(L,/K) is powerful. This is a contradic-
tion. We have completed the proof of Corollary.
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