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Regular and Stable Points in Dirichlet Problem
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Consider a subregion M of Carathodory type To judge the stability for concrete regions it is
of the extended Euclidean space / a__ /a U convenient to localize the stability. In his cele-
{oo} of dimension d >- 2, i.e. M is a subregion of brated paper [5] Keldysh introduced the follow-
/ such that the boundary OM of M is contained ing notion" a boundary point y c3M is said to

/din and 0M OM. A sequence (Mi)i of be a stable point if H(y) f(y) for every f
subregions Mi of /a is referred to as a squeezer C(a). A point OM which is not a stable
of M if MD Mi+1D M for every i_> 1 and point is termed as an unstable point. In view of (1)
N >IM /17/. For any f C(/a) we denote by it is readily seen that y OM is a stable point if

H the harmonic Dirichlet solution for the and only if y is a regular point of the set /r in
boundary function f] 0M on M obtained by the the sense of [6, Chap. V].
Perron-Wiener-Brelot method (cf. e.g. [4]). It is In terms of stable points Keldysh [5] showed
known as the Wiener type theorem that the the following: the Dirichlet problem is stable in-
sequence(H’) converges pointwise on /17/and side M if and only if the set of all unstable
locally uniformly on M for any f C(/ ) and points in OM is of harmonic measure zero rela-
for any squeezer (Mi)il of M. It is convenient tive to M; the Dirichlet problem is stable in M
to introduce the notation if and only if every boundary point in OM is

H(x) "= lim H’(x) (x M) stable. As for the relation of stability of bound-
-.oo ary points to the regularity (cf. e.g. [4]) of them,

which is harmonic on M and depends only on Keldysh [5] proved that a stable boundary point
f[ 0M and /r independent of the_choice of the y OM is automatically a regular boundary
squeezer (M). The function HM is sometimes point for the Dirichlet problem on M but there is
referred to as the external solution of the Dirich- an example (i.e. the so called Keldysh ball (cf. no.
let problem for the domain M with the boundary 12 below)) indicating that the converse of the
function f and also given by above is not true. There are many handy geomet-

(1) H(x) f(y) dctx(y), ric criterion for the regularity and therefore it
will be usefull to give a practical geometric con-

where tx is the Dirac measure with its support at dition under which the regularity implies the sta-
x and /c denotes the balayage operation for the bility for boundary points The purpose of this
set M (el. [6, {}5 in Chap. V]). The Dirichlet paper is to give such an easily applicable condi-
problem is _said to be stable inside M (stable in M, tion. Roughly speaking (el. no. 3 below for pre-
resp.) if H H on M (if (H’) Converges_ cise definition), a boundary point y OM is said
uniformly to f on oM, resp.). The stability in M to be graphic if one of the following two condi-
implies the stability_ inside M. In particular, the tions is satisfied: there exist a neighborhood U of
stability in M is closely related to the harmonic y, a Cartesian coordinate x (x, xe-
approximation question (el. e.g. [61, [31, [11, etc.), xe) (x’, xe), and a continuous function (x’)
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If M has a Cl-boundary aM, or more generally, the natural Riemannian distance on Sd-1. Let the
if M is a Lipschitz domain, then any boundary number D stand for the geodesic distance be-
point of M is graphic (and regular). The vertex of tween the north and south poles of Sd-. Then, a
the Lebesgue spine (cf. e.g. [4]) is an example of point y is referred to as a polar graphic
an irregular graphic point. We will prove the fol- point for if there exist a polar coordinate (r,
lowing result. (r [0, oo), S-) in Rd

for which the po-
2. Theorem. A graphic boundary point y lar coordinate of y is (p, r/) or y- prl(p > 0),

M of a Carath6odory domain M is a stable bound- two constants 6o (0, D/4) and ’o (0, p),
ary point of M if and only if y is a regular boundary and a function b C(fl(7, 6o)) with (r/)
point ofM for the Dirichlet problem on M. and 1 p[ < o on fl(r], 6o) such that

As already stated y M is stable if and (6) Y) Cl R0 {(r, )’p- Vo < r < ()
only if it is regular for /17/c. Hence the above re- ( fl(r/, 6o))},
sult may be restated as follows: a graphic bound- where Ro (p vo, p + vo) fi(7, 60), and
ary point y oM of a Carathodory domain M (7) (Y2) 0 Ro {(r, )’r- ()
is regular for Mc

if and only if y is a regular ( fl(r], 60))}.
/c.point for A probabilistic proof to the result The function in (4) and (5) or in (6) and

in this restated form is given by R. Howard (see (7) is said to be the local representing function of
the recent paper [2] of Bass and Burdzy) for the Y) at y /2. It is not difficult to construct an
case y M is a Cartesian graphic point. In con- example of y Y2 which is a Cartesian (polar,
trast with this our proof is analytic and covers resp.) graphic point for /2 but not a polar (Carte-
not only the case y oM is a Cartesian graphic sian, resp.) graphic point for D. A region /2

point but also the case y M is a polar with compact Y)in Rd
is referred to as a con-

graphic point as well (see no. 3 below). The proof tinuous domain (or a domain of type C) if every
of Theorem 2 will be given in nos. 8 and 10 be- point y Y2 is a graphic point.
low. 8. Proof of Theorem 2 (The case of Carte-

3. Graphic points. For a subregion ,Q of sian graphic point). Keldysh [5] proved that y
/d Rd U {oo} we denote by Q the boundary M is a regular boundary point of M if y is a
( \ Y2) FIRd of Y) relative to R. We say that a stable boundary point of M. Hence we only have
point y oY2 is a graphic point for Y2 if y is to show that, under the assumption that y e
either a Cartesian graphic point or a polar is a graphic point for M, y M is a stable
graphic point for Y) in the sense described below, boundary point of M if y is a regular boundary
First, a point y Y2 is referred to as a Carte- point with respect to the harmonic Dirichlet

sian graphic point for /2 if there are a Cartesian problem on M. First we treat the case y M is
coordinate x (x - d)x x (x’, x in a Cartesian graphic point. Hence there exist a

d) RdRd
for which the coordinate of y is the origin Cartesian coordinate (x, x in for which

0 (0’,0), two positive constants ro > 0 and the coordinate of y is the origin 0 (0’, 0)of
so > 0, and a function C(B’(0, ro)) with Rd, two constants ro > 0 and so > 0, and a func-
(0) 0 and Ib[ < So on B’(0, ro), where tion b C(B’(O, ro)) with (0) 0 and
B’(0, ro) is the open disc in Rd-

with radius ro < So such that (4) and (5) are_valid. Then we
centered at the origin 0( 0’) of R-1, such that only have to show that HyM(0) f(0), or

(4) 0 R0 {(x’, xd)’(X’) < X
d < S0 equivalently, there is a squeezer (Mi)i> of

(x’ e B’(0,ro)}, such that
where Ro B’(0, ro) (-- so, So), and (9) lim H(0) f(0)
(5) (a/2) Ro= ((x,x "x (x

(x’ e B’(0, ro))}, for any f C(R). For this purpose choose an

We denote by Sd-X--{ Rd’ll 1} arbitrary but then fixed number > 0. Then
there exist two constants r (0, ro) and s (0

the unit sphere in Rd. By fl(, ) we mean the
geodesic ball (spherical cap) on Sd- with radius

so) such that Ibl < s/2 on B’(0, r), If(x)
c? > 0 centered at Sd-1 f(0) < e for x in the closure df R "= B’(0,d r)

so thatfl(, 6) {r/ (-- s s) Ma R= {(x’ x "(x’) <xsd-l"dsd-(, 7"]) < }, where dsd- denotes
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s(x’ B’(0, r))), and (OMI R) ((x’,xd)"
d

x (x’) (x’ B’(0, r))}. Set S=Mfl R
and Si S-- ei= {x-- ei’x
(0’, s/2i) Rd(i-1,2,...). We can find a
squeezer (Q)> of M such that each /2 is a
polyhedron (i.e. a union of a finite number of in-
tersections of a finite number of half spaces) and

2 D D+I(j" 1,2,...). There exists a subsequ-
ence Q’i)i> of Q)> satisfying , R S U
S(i 1,2,...). Observe that the upper side

Si lies above OM. We now define a required
squeezer (Mi)i> of M by Mi Di, U Si(i
1,2,...). Consider two functions g and h on
given as follows: g(x) f(0) + s for x
(OM) R and g(x) =a+s for x OS\(OM)

R, where a sup f l;h(w) =f(0) --s for
x (OM) R and h(x)=--a
OS\ (OM)f R. Then define two functions
and h on OS by gi(x) g(w + ei) and hi(x)
h(x + ei). It is easy to see that

H’(x) HS (x + ei) and HS,’(x) HS (x + e)
for every x S (i 1,2,...). Let p be any up-
per function for /.’=, He,, i.e. p is lower bound-
ed and hyperharmonic on Si and lira inf,_,
p(ac) gi(z)for every z OSi. Then consider
the function q on M defined by q min{p, a +
s} on S and q= a+ s on Mi\S. Clearly q is
an upper function for /’= H’. Since p _> q _>
MH, on S, we have HS’>_ H’ on Si. Hence
s sHe (e) H, (0) _> H’(0). As is easily seen by

using the barrier criterion, an interior point in
(OS) (OM) is a regular boundary point of S if
and only if it is a regular boundary point of M
(cf. e.g. [4]). Hence 0 OS is regular for S since
0(- ) OM is regular for M. In view of
S and ei-* 0 (i---* oo), we conclude that limi_
HS (e,) limxs,x_.o H(x) g(O) f(O) + s.
Therefore we obtain

lim H’(0) N f(0) + s.

On repeating a similar argument by using h in-
stead of g we can conclude that

lira H’ (0) > f(O) e.

From these two inequalities, by letting e 0, (9)
follows. [-

10. Proof of Theorem 2 (The case of polar
graphic point). Next we show that, under the
assumption that y OM is a polar graphic point
for M, y OM is a stable boundary point of M
if is a regular boundary point of M. Then there

exist a polar coordinate (r, )for which y has
the coordinate (P, 7)or y= p(p > 0), two
constants co (0, D/4) and vo (0, p), and a
function C(fl(7, Co)) with (r]) p and l
-p[< Vo such that (6) an_d (7) are valid. We
are to prove that HM(p7) f(pr]), or

equivalently, there is a squeezer (Mi)i> of M
such that
(11) lim H’(pr]) f(pr])

for every f C(/a). For the purpose choose
and then fix an arbitrary number s > 0. Then
there exist two constants z" (0, vo) and
(0, 80) such that ]-- p I< v/2 on fl(7, c),
f(r) --f(pr/)l < s for (r, ) in the closure of
R’= (p--v,p+r) x fl(r/, 8), Mr3 R {r"
p-- v< r< () (fl(r, 6))}, and (0M)
R= {r’r= () ((V, 8))}. Let S= M
N R and S =,iS= {2ix’x S}, where 2i
1 + v/2pi(i 1,2,...). As in 8 let (D) be
a squeezer of M such that each O is a

polyhedron and Q D /2+1(i 1,2,...). There is

a subseqence (J’i)i of (3") such that Q, N R
c S U S (i 1,2,...). Observe that the bottom
of S lies below M. We define a required
squeezer (Mi)i> of M by M , U S (i=
1,2,...). Consider two functions g and h on S
given as follows: g(r)= f(p?)+ s for
(M) R and g(r) a+ s for r S\ (M)

R, where a sup ]f [; h(r) f(p?)
e(re (M) fq R) and h(r) --a--s on
S\ (OM) R. Then take two functions gi and

hi on Si given by gi(x) g(/7x) and hi(x)
h(RiIx) for x Si(i= 1,2,...). It is easily
seen that

gS,’(x) HS([x) and gsh,’(x) HSh(7,X)
for every x Si(i 1,2,...). As in 8, !et p be
any upper function for /7/,= Hs,, , on Si. The
function q defined on Mi by min(p, a + e} on
and by a + e on Mi\ S is an upper function for
M M// H From p > q >_ H’ on Si it follows

that HSg >- H,M’ on Si. Hence HgS(2-p7)
Hs,, ’> H,.,tP7) tpr) (i= 1,2,...). Recall that
pr] S is regular for S because of pr2 OM
being regular for M. Since ,-pr/ S and
--* p (i -- oo) lim_Hs(2-pr]) limrs,r_.o
HS(r) g(P7) f(P7) + s and a fortiori

lirni-oo H(P7) <- f(P7) + s. Similarly lirni_.oo
H(pr]) >_ f(pr]) e. Letting s $ 0, we deduce
(11).
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12. Corollary. If M is a continuous domain,

then the Dirichlet problem is stable inside M. If M
is a continuous domain whose boundary points are
all regular, then the Dirichlet problem is stable in
M.

Proof A continuous domain is of course a

domain of Carathodory type. Theorem 2 assures
that the set of unstable boundary points of M
coincides with the set of irregular boundary
points of M, which is of capacity zero by the Kel-
logg theorem and a fortiori of harmonic measure
zero relative to M. Thus the Keldysh theorem
assures,that the Dirichlet problem is stable in-
side M. The latter assertion also follows from the
Keldysh theorem that the Dirichlet problem is

stable in M if and only if the set of unstable
boundary points of M is empty. [

13. Examples. We classify regions M of
Carathodory type into the following three types:
a region M is of type I if the Dirichlet problem is
stable in M and afortiori it is stable inside M
type II if the Dirichlet problem is not stable in M
but it is stable inside M type III if the Dirichlet

problem is not stable inside M and a fortiori it is
not stable in M. By the latter half of Corollary
12, Lipschitz domains M and convex domains M
are typical examples of M of type I. A Lebesgue
ball M is a topological ball (i.e. a domain M such
that there exists a homeomorphism h of M onto
the closed unit ball B e U Se-1

(where B e
is the

open unit ball in Re
with h(M) Be

and
h(OM) Se-l) such that OM is smooth except
for a single point of OM which is the Lebesgue
spine (of. e.g. [4]). Then, by Corollary 12, we see
that a Lebesgue ball M is of type II. Existence of
a region M of type Ill is a nontrivial result of
Keldysh [5]: the so called Keldysh ball is of type
]]1, which is a topological ball M whose boundary
oM consists of regular points and is of finite
area such that the set of unstable points in OM is

of zero area and of positive harmonic measure.
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