On the Diophantine Equation $2^{a} X^{4}+2^{b} Y^{4}=2^{c} Z^{4}$

By Yasutaka SUZUKI
Department of Mathematics, Faculty of Education, Niigata University
(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1996)

1. Introduction. In this paper, an integer means a rational integer. The greatest common divisor of the integers a and b is denoted by (a, b). We shall prove the following main theorems.

Theorem 1. Let a, b, c be non-negative integers. If X, Y, Z is a solution of the equation

$$
2^{a} X^{4}+2^{b} Y^{4}=2^{c} Z^{4}
$$

in positive odd integers, then

$$
X=Y=Z \text { and } a+1=b+1=c
$$

Theorem 2. Let m be a non-negative integer. Then the equation

$$
X^{4}+2^{m} Y^{2}=Z^{4}
$$

has no solutions in nonzero integers X, Y, Z.
2. Preliminaries. We remind first the following three theorems which are all well-known (see [1], [2] or [3]).

Theorem 3. Let X, Y, Z be a solution of the equation

$$
X^{2}+Y^{2}=Z^{2}
$$

with positive integers X, Y, Z such that (X, Y) $=1$ and X odd. Then there exist unique positive integers u and v of opposite parity with $(u, v)=1$ and $u>v>0$ such that

$$
\begin{aligned}
& X=u^{2}-v^{2} \\
& Y=2 u v \\
& Z=u^{2}+v^{2}
\end{aligned}
$$

Theorem 4. The equation

$$
X^{4}+Y^{4}=Z^{2}
$$

has no solutions in nonzero integers X, Y, Z.
Theorem 5. The equation

$$
X^{4}+Y^{2}=Z^{4}
$$

has no solutions in nonzero integers X, Y, Z.
3. On the equation $X^{4}+2^{m} Y^{4}=Z^{4}$

In this section, we shall give a simple proof of the following theorem which is slightly stronger than, and implies Fermat's last theorem for $n=4$ (see [4]).

Theorem 6. Let m be a non-negative integer. Then the equation

$$
X^{4}+2^{m} Y^{4}=Z^{4}
$$

has no solutions in odd integers X, Y, Z.

Proof. Suppose that u is the least integer for which

$$
x^{4}+2^{m} y^{4}=u^{4}
$$

has a solution in positive odd integers x, y, u for some non-negative integer m. The statement that u is least immediately implies that three integers x, y, u are pairwise relatively prime. Since the fourth power of an odd integer is congruent to 1 modulo 16 , we have

$$
2^{m} y^{4}=u^{4}-x^{4} \equiv 1-1=0(\bmod 16)
$$

Then $m>3$. Since u and x are both odd and relatively prime, we have

$$
u^{2}+x^{2} \equiv 2(\bmod 4)
$$

and

$$
\begin{gathered}
\left(u^{2}+x^{2}, u+x\right)=\left(u^{2}+x^{2}, u-x\right) \\
=(u+x, u-x)=2
\end{gathered}
$$

And since

$$
2^{m} y^{4}=u^{4}-x^{4}=(u-x)(u+x)\left(u^{2}+x^{2}\right)
$$

there exist positive odd integers a, b, c such that

$$
u-x=2 a^{4}, u+x=2^{m-2} b^{4}, u^{2}+x^{2}=2 c^{4}
$$

or

$$
u-x=2^{m-2} b^{4}, u+x=2 a^{4}, u^{2}+x^{2}=2 c^{4}
$$

Hence

$$
\begin{gathered}
4 c^{4}=2\left(u^{2}+x^{2}\right)=(u-x)^{2}+(u+x)^{2} \\
=4 a^{8}+2^{2 m-4} b^{8}
\end{gathered}
$$

and so we obtain

$$
\left(a^{2}\right)^{4}+2^{2 m-6}\left(b^{2}\right)^{4}=c^{4}
$$

in positive odd integers a, b, c.
Moreover, since $0<x<u$, we have c^{4} $<2 c^{4}=u^{2}+x^{2}<2 u^{2}<u^{4}$ and so $0<c<u$. Thus u was not least after all and the theorem is proved.

4. Proofs of the main theorems.

Lemma 7. Let X, Y, Z be a solution of the equation

$$
X^{4}+Y^{4}=2 Z^{2}
$$

in non-negative integers. Then

$$
X^{2}=Y^{2}=Z
$$

Proof. Let X, Y, Z be a solution of the equation $X^{4}+Y^{4}=2 Z^{2}$ in non-negative integers. If one of X, Y and Z is zero, then $X=Y$ $=Z=0$. Thus, we suppose that X, Y and Z are
positive. Let d be the greatest common divisor of X and Y, then $d|X, d| Y$, and also $d^{2} \mid Z$. We set $X=d x, Y=d y$ and $Z=d^{2} z$. Hence we have

$$
x^{4}+y^{4}=2 z^{2}
$$

with positive integers x, y, z which are pairwise relatively prime. Furthermore, we note that x, y and z be all odd. Thus, we obtain

$$
\left(2 z^{2}\right)^{2}=\left(x^{4}+y^{4}\right)^{2}=\left(x^{4}-y^{4}\right)^{2}+4 x^{4} y^{4}
$$

Since x and y are both odd, $\frac{x^{4}-y^{4}}{2}$ is an integer. Thus

$$
(x y)^{4}+\left(\frac{x^{4}-y^{4}}{2}\right)^{2}=(z)^{4}
$$

where $x y>0, z>0$ and $\frac{x^{4}-y^{4}}{2}$ is an integer. By Theorem 5, we have $\frac{x^{4}-y^{4}}{2}=0$ and $x y=$ z. Therefore $x^{2}=y^{2}=z$, and so $X^{2}=Y^{2}=Z$. This completes the proof.

Corollary 8. Let X, Y, Z be a solution of the equation

$$
X^{4}+Y^{4}=2 Z^{4}
$$

in non-negative integers. Then

$$
X=Y=Z
$$

Proof of Theorem 1. Let a, b and c be non-negative integers. Let X, Y, Z be a solution of the equation

$$
2^{a} X^{4}+2^{b} Y^{4}=2^{c} Z^{4}
$$

in positive odd integers X, Y, Z.
We shall first show that $a=b$. If $a \neq b$, then, without loss of generality, we may assume that $a<b$. Set $b=a+m$. Consequently we obtain that $c=a$ and

$$
X^{4}+2^{m} Y^{4}=Z^{4}
$$

where X, Y and Z are positive odd integers, and m is a positive integer. By Theorem 6, this equation is impossible. Thus $a=b$.

It follows from $a=b$ that $c=a+1$ and

$$
X^{4}+Y^{4}=2 Z^{4}
$$

with positive odd integers X, Y, Z. Hence according to Corollary 8 , we have $X=Y=Z$. This completes the proof of Theorem 1.

Lemma 9. Let m be a non-negative integer. If a set of three odd integers X, Y, Z satisfies the equation

$$
X^{4}+2^{m} Y^{4}=Z^{2}
$$

then $m \geqq 3$ and $m \equiv-1(\bmod 4)$.
Proof. Since the square of an odd integer is congruent to 1 modulo 8 , we have

$$
2^{m} Y^{4}=Z^{2}-X^{4} \equiv 1-1=0(\bmod 8)
$$

This implies $m \geqq 3$.
We suppose that there is a set of four integers X, Y, Z, m satisfying $X^{4}+2^{m} Y^{4}=Z^{2}$ with X, Y, Z odd, $m>3$ and $m \not \equiv-1(\bmod 4)$, and we assume that the set of positive integers x, y, z, m is such that m is the least positive integer. Canceling by the greatest common divisor of x^{4} and y^{4}, we may assume that x, y, z are pairwise relatively prime. We have $2^{m} y^{4}=z^{2}-$ $x^{4}=\left(z+x^{2}\right)\left(z-x^{2}\right)$, and since z, x are both odd integers and relatively prime, we have $\left(z+x^{2}, z-x^{2}\right)=2$. Hence there exist positive odd integers a, b with $(a, b)=1$ such that
(I) $z+x^{2}=2 a^{4}, z-x^{2}=2^{m-1} b^{4}$
or
(II) $z+x^{2}=2^{m-1} b^{4}, z-x^{2}=2 a^{4}$.

In the case of (I) $z+x^{2}=2 a^{4}, z-x^{2}=$ $2^{m-1} b^{4}$, we obtain $x^{2}=a^{4}-2^{m-2} b^{4}, 2^{m-2} b^{4}=a^{4}$ $-x^{2}=\left(a^{2}+x\right)\left(a^{2}-x\right), m-2 \geqq 3$, and so m $\geqq 5$. Also note that a and x are both odd integers and relatively prime and $\left(a^{2}+x, a^{2}-x\right)$ $=2$.
Hence there exist positive odd integers A, B with $(A, B)=1$ such that

$$
a^{2}+x=2 A^{4}, a^{2}-x=2^{m-3} B^{4}
$$

or

$$
a^{2}+x=2^{m-3} B^{4}, a^{2}-x=2 A^{4}
$$

Thus, we obtain $a^{2}=A^{4}+2^{m-4} B^{4}$, where a, A, B are odd integers. Further $m-4<m$ and $m-4 \equiv m \not \equiv-1(\bmod 4)$. This contradicts the choice of m.

In the case of (II) $z+x^{2}=2^{m-1} b^{4}, z-x^{2}$ $=2 a^{4}$, we obtain $x^{2}=2^{m-2} b^{4}-a^{4}$. Since $2^{m-2} b^{4}$ $=x^{2}+a^{4} \equiv 1+1=2(\bmod 4)$, we have $m-$ $2=1$, so $m=3$. This contradicts the choice of m. Hence the lemma is proved.

Proof of Theorem 2. By Theorem 5, we may assume $m \geqq 1$. So if X or Z is even, Z or X should also be even, so that we may assume X, Y, Z odd. From $X^{4}+2^{m} Y^{2}=Z^{4}$ follows $\left(2^{m} Y^{2}\right)^{2}=\left(Z^{4}-X^{4}\right)^{2}=\left(Z^{4}+X^{4}\right)^{2}-4 X^{4} Z^{4}$. Since X, Z are both odd integers, so is $\frac{X^{4}+Z^{4}}{2}$, and we obtain

$$
(X Z)^{4}+2^{2 m-2} Y^{4}=\left(\frac{X^{4}+Z^{4}}{2}\right)^{2}
$$

where $X Z, Y, \frac{X^{4}+Z^{4}}{2}$ are odd integers and $2 m-2 \not \equiv-1(\bmod 4)$. By Lemma 9 , the last
equation is impossible. Hence the proof of Theorem 2 is complete.

References

[1] W. W. Adams and L. J. Goldstein: Introduction to Number Theory. Prentice-Hall, New Jersey (1976).
[2] E. Grosswald: Topics from the Theory of Numbers. 2nd ed., Birkhăuser, Boston (1984).
[3] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers. Fifth ed., Oxford, London (1979).
[4] Y. Suzuki: Simple Proof of Fermat's Last Theorem for $n=4$. Proc. Japan Acad., 62A, 209-210 (1986).

