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On the Diophantine Equation 2 ax4 + 2 by4 = 2cz4
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1. Introduetion. In this paper, an integer
means a rational integer. The greatest common
divisor of the integers a and b is denoted by
(a, b). We shall prove the following main
theorems.

Theorem 1. Let a, b, c be non-negative inte-

gers. If X, Y, Z is a solution of the equation
2ax4 -+- 2by4-- 2CZ4

in positive odd integers, then
X Y= Zanda+ 1= b+ 1= c.

Theorem 2. Let m be a non-negative integer.
Then the equation

X4 + 2my-= Z4

has no solutions in nonzero integers X, Y, Z.
2. Preliminaries. We remind first the fol-

lowing three theorems which are all well-known
(see [1], [2] or [3]).

Theorem 3. Let X, Y, Z be a solution of the
equation

X + y= Z
with positive integers X, Y, Z such that (X, Y)

1 and X odd. Then there exist unique positive in-

teers u and v of opposite parity with (u, v) 1
and u v 0 such that

2X--u --Y,

Y: 2uv,
Z=u+v.

Theorem 4. The equation
X4 + y4_ Z

has no solutions in nonzero integers X, Y, Z.
Theorem 5. The equation

X4 + y- Z4

has no solutions in nonzero integers X, Y, Z.
3. On the equation X4 + 2mY4 Z4

In this section, we shall give a simple proof
of the following theorem which is slightly stron-
ger than, and implies Fermat’s last theorem for
n 4 (see [4]).

Theorem 6. Let m be a non-negative integer.
Then the equation

X4 + 2mY4= Z4

has no solutions in odd integers X, Y, Z.

Proof Suppose that u is the least integer
for which

4 4 4
X +2my =U

has a solution in positive odd integers x, y, u
for some non-negative integer m. The statement
that u is least immediately implies that three in-
tegers x, y, u are pairwise relatively prime.
Since the fourth power of an odd integer is con-
gruent to 1 modulo 16, we have

2my4 4 4
=U --X --= 1-- 1=0(mod16).

Then rn 3. Since u and x are both odd and re-
latively prime, we have

u +x 2 (mod4)
and

(u+x,u+x) (u+x,u-x)
-(u+x,u-x)=2.

And since
2my4 4 4=u -x (u x) (u + x) (u+x),

there exist positive odd integers a, b, c such that
U x 2a4 9.m-2h4 2U +X U + 2C4

or

X
4u-x=2m-b4, u+x= 2a4, u + =2.

Hence
4c4 2(u + x) (u- x) + (u + x)

4a + 2m-4bS
and so we obtain

(a) 4 + 2m-(b)4 =c4
in positive odd integers a, b, c.

4Moreover, since 0 <x< u, we have c
2C4

X 4=u + <2u < and so 0<c<u.
Thus u was not least after all and the theorem is
proved.

4. Proofs of the main theorems.
Lemma 7. Let X, Y, Z be a solution of the

equation
X4 + y4 2Z

in non-negative integers. Then
X =Y =Z.

Proof Let X, Y, Z be a solution of the
equation X4 + y4= 2Z in non-negative inte-
gers. If one of X, Y and Z is zero, then X- Y
Z 0. Thus, we suppose that X, Y and Z are
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positive. Let d be the greatest common divisor of
X and Y, then d IX, d[ Y, and also dlZ. We
set X= dr, Y= dy and Z= d2z. Hence we
have

4 4x + =2z
with positive integers x, y, z which are pairwise
relatively prime. Furthermore, we note that x, y
and z be all odd. Thus, we obtain

(2z) (x4 + y4) (x 4 y4) 2 4. 4x4 4y
4 4

X --y
Since x and y are both odd, 2 is an inte-
ger. Thus

4

(Xy)4 4. (X --2
where xy > 0, z > 0 and

4
Y ) (Z) 4

4 4
X --y

is an integer.2
4 4x --y

By Theorem 5, we have 2 --0 and xy-

Z.z. Therefore x y z, and so X y2
This completes the proof.

Corollary 8. Let X, Y, Z be a solution of the
equation

X4 @ y4_ 2Z4

in non-negative integers. Then
X=y-z.

Proof of Theorem 1. Let a, b and c be
non-negative integers. Let X, Y, Z be a solution
of the equation

2aX4 4. 2by4----- 2CZ4

in positive odd integers X, Y, Z.
We shall first show that a= b. If a 4= b,

then, without loss of generality, we may assume
that a < b. Set b-- a+ rn. Consequently we
obtain that c a and

X4 _- 2my4 Z4,
where X, Y and Z are positive odd integers, and
m is a positive integer. By Theorem 6, this equa-
tion is impossible. Thus a b.

It follows from a b that a 4. 1 and
X4 4. y4: 2Z4

with positive odd integers X, Y, Z. Hence
according to Corollary 8, we have X- Y Z.
This completes the proof of Theorem 1.

Lemma 9. Let rn be a non-negative integer. If
a set of three odd integers X, Y, Z satisfies the
equation

X4 + 2, y4__ Z2,
then m

_
3 and m i (mod 4).

Proof Since the square of an odd integer is
congruent to 1 modulo 8, we have

2m y4 Z X4 1 1 0 (mod 8).
This implies m

_
3.

We suppose that there is a set of four inte-
gers X, Y, Z, m satisfying X4 + 2, y4 Z
with X, Y, Z odd, rn > 3 and m 1 (mod 4),
and we assume that the set of positive integers

x, y, z, m is such that m is the least positive in-
teger. Canceling by the greatest common divisor

4 4
of x and y, we may assume that x, y, z are
pairwise relatively prime. We have 2"y4-- z2-

4x (zWx2)(z-x2), and since z, x are both
odd integers and relatively prime, we have
(z4.x z-- x 2. Hence there exist positive
odd integers a, b with (a, b) 1 such that

(I) z-+-x2= 2a4,z-x2= 2-1b4
or

(II) z -I- x2 2"-1b4 4
,Z--X :2a.

4In the case of (I) z4.x 2a z--x
2,-b4 4 2,-b4 2-b4 4

we obtain x a a
2 a2--x ( -t-x)(a2-x), m-- 2

_
3, and sorrt

_
5. Also note that a and x are both odd inte-

gers and relatively prime and (a24. x, a --x)
--2.
Hence there exist positive odd integers A, B with
(A, B) 1 such that

2m-3B 4
a @x-2A4, a --x

or
2m-3B4,a +x a --x--2A4.

Thus, we obtain a A4 4. 2m-4B 4
where a A

B are odd integers. Further rn- 4 < m and
rn-- 4------ m l(mod4). This contradicts
the choice of m.

In the case of (II) z--x 2m-lb4,z-x2
2a4 2m-2b4 a

4
Since 2m-2b4we obtain x

2 a4=x + 1+ 1=2 (mod4), we have m--
2- 1, so m 3. This contradicts the choice of
m. Hence the lemma is proved.

Proof of Theorem 2. By Theorem 5, we may

assume m 1. So if X or Z is even, Z or X
should also be even, so that we may assume

X4 Z4X Y Z odd. From + 2 Y follows
(2, y2)2 (Z4 X4)2 (Z4 4- X4) 4X4Z4.

X 4 ... Z4

Since X, Z are both odd integers, so is 2
and we obtain

(XZ)4-1- 22"-2Y4: (X44.2 Z4)2
X4 + Z4

where XZ, Y, 2 are odd integers and

2m--2 - l(mod4). By Lemma 9, the last
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equation is impossible.
Theorem 2 is complete.

Hence
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