On the Diophantine Equation $2^{a}X^{4} + 2^{b}Y^{4} = 2^{c}Z^{4}$

By Yasutaka SUZUKI

Department of Mathematics, Faculty of Education, Niigata University (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1996)

1. Introduction. In this paper, an integer means a rational integer. The greatest common divisor of the integers a and b is denoted by (a, b). We shall prove the following main theorems.

Theorem 1. Let a, b, c be non-negative integers. If X, Y, Z is a solution of the equation $2^{a}X^{4} + 2^{b}Y^{4} = 2^{c}Z^{4}$

in positive odd integers, then

X = Y = Z and a + 1 = b + 1 = c.

Theorem 2. Let *m* be a non-negative integer. Then the equation

 $X^4 + 2^m Y^2 = Z^4$

has no solutions in nonzero integers X, Y, Z.

2. Preliminaries. We remind first the following three theorems which are all well-known (see [1], [2] or [3]).

Theorem 3. Let X, Y, Z be a solution of the equation

$$X^2 + Y^2 = Z^2$$

with positive integers X, Y, Z such that (X, Y)= 1 and X odd. Then there exist unique positive integers u and v of opposite parity with (u, v) = 1and u > v > 0 such that

$$X = u^{2} - v^{2},$$

$$Y = 2uv,$$

$$Z = u^{2} + v^{2}.$$

Theorem 4. The equation

$$X^{4} + Y^{4} = Z^{2}$$

Theorem 5.

has no solutions in nonzero integers X, Y, Z.

The equation
$$X^4 + Y^2 = Z^2$$

has no solutions in nonzero integers X, Y, Z. 3. On the equation $X^4 + 2^m Y^4 = Z^4$

In this section, we shall give a simple proof

of the following theorem which is slightly stronger than, and implies Fermat's last theorem for n = 4 (see [4]).

Let **m** be a non-negative integer. Theorem 6. Then the equation

$$X^{4} + 2^{m}Y^{4} = Z^{4}$$
has no solutions in odd integers X, Y, Z.

Proof. Suppose that u is the least integer for which

$$x^4 + 2^m y^4 = u^4$$

has a solution in positive odd integers x, y, ufor some non-negative integer m. The statement that u is least immediately implies that three integers x, y, u are pairwise relatively prime. Since the fourth power of an odd integer is congruent to 1 modulo 16, we have

$$2^{m}y^{4} = u^{4} - x^{4} \equiv 1 - 1 \equiv 0 \pmod{16}.$$

Then m > 3. Since u and x are both odd and relatively prime, we have

$$u^2 + x^2 \equiv 2 \pmod{4}$$

and

$$(u^2 + x^2, u + x) = (u^2 + x^2, u - x)$$

= $(u + x, u - x) = 2.$

And since

 $2^{m}u^{4} = u^{4} - x^{4} = (u - x)(u + x)(u^{2} + x^{2}).$ there exist positive odd integers a, b, c such that $u - x = 2a^4$, $u + x = 2^{m-2}b^4$, $u^2 + x^2 = 2c^4$

or

$$u - x = 2^{m-2}b^4$$
, $u + x = 2a^4$, $u^2 + x^2 = 2c^4$.
Hence

$$4c^{4} = 2(u^{2} + x^{2}) = (u - x)^{2} + (u + x)^{2}$$
$$= 4a^{8} + 2^{2m-4}b^{8}$$

and so we obtain $(a^2)^4 + 2^{2m-6}(b^2)^4 = c^4$

in positive odd integers a, b, c.

Moreover, since 0 < x < u, we have c^4 $< 2c^4 = u^2 + x^2 < 2u^2 < u^4$ and so 0 < c < u. Thus \boldsymbol{u} was not least after all and the theorem is proved.

4. Proofs of the main theorems.

Lemma 7. Let X, Y, Z be a solution of the equation

$$X^4 + Y^4 = 2Z^2$$

in non-negative integers. Then

$$X^2 = Y^2 = Z.$$

Proof. Let X, Y, Z be a solution of the equation $X^4 + Y^4 = 2Z^2$ in non-negative integers. If one of X, Y and Z is zero, then X = YZ = 0. Thus, we suppose that X, Y and Z are

No. 4]

positive. Let d be the greatest common divisor of X and Y, then $d \mid X, d \mid Y$, and also $d^2 \mid Z$. We set X = dx, Y = dy and $Z = d^2 z$. Hence we have

$$x^4 + y^4 = 2z^2$$

with positive integers x, y, z which are pairwise relatively prime. Furthermore, we note that x, yand z be all odd. Thus, we obtain

$$(2z^{2})^{2} = (x^{4} + y^{4})^{2} = (x^{4} - y^{4})^{2} + 4x^{4}y^{4}.$$

Since x and y are both odd, $\frac{x-y}{2}$ is an integer. Thus

$$(xy)^{4} + \left(\frac{x^{4} - y^{4}}{2}\right)^{2} = (z)^{4}$$

where xy > 0, z > 0 and $\frac{x^2 - y^2}{2}$ is an integer.

By Theorem 5, we have $\frac{x^4 - y^4}{2} = 0$ and xy =z. Therefore $x^2 = y^2 = z$, and so $X^2 = Y^2 = Z$. This completes the proof.

Corollary 8. Let X, Y, Z be a solution of the equation

 $X^4 + Y^4 = 2Z^4$ in non-negative integers. Then X = Y = Z.

Proof of Theorem 1. Let *a*, *b* and *c* be non-negative integers. Let X, Y, Z be a solution of the equation

$$2^{a}X^{4} + 2^{b}Y^{4} = 2^{c}Z^{4}$$

in positive odd integers X, Y, Z.

We shall first show that a = b. If $a \neq b$, then, without loss of generality, we may assume that a < b. Set b = a + m. Consequently we obtain that c = a and

$$X^4 + 2^m Y^4 = Z^4$$

where X, Y and Z are positive odd integers, and m is a positive integer. By Theorem 6, this equation is impossible. Thus a = b.

It follows from
$$a = b$$
 that $c = a + 1$ and
 $X^4 + Y^4 = 2Z^4$

with positive odd integers X, Y, Z. Hence according to Corollary 8, we have X = Y = Z. This completes the proof of Theorem 1.

Lemma 9. Let *m* be a non-negative integer. If a set of three odd integers X, Y, Z satisfies the equation

$$^{4} + 2^{m}Y^{4} = Z^{2}$$

X then $m \geq 3$ and $m \equiv -1 \pmod{4}$.

Proof. Since the square of an odd integer is congruent to 1 modulo 8, we have

$$2^{m}Y^{4} = Z^{2} - X^{4} \equiv 1 - 1 \equiv 0 \pmod{8}.$$

This implies $m \ge 3$.

We suppose that there is a set of four integers X, Y, Z, m satisfying $X^4 + 2^m Y^4 = Z^2$ with X. Y. Z odd. $m \ge 3$ and $m \not\equiv -1 \pmod{4}$. and we assume that the set of positive integers x, y, z, m is such that m is the least positive integer. Canceling by the greatest common divisor of x^4 and y^4 , we may assume that x, y, z are pairwise relatively prime. We have $2^m y^4 = z^2 - z^2$ $x^4 = (z + x^2)(z - x^2)$, and since z, x are both odd integers and relatively prime, we have $(z + x^2, z - x^2) = 2$. Hence there exist positive odd integers a, b with (a, b) = 1 such that

(I)
$$z + x^2 = 2a^4$$
, $z - x^2 = 2^{m-1}b^4$

or

(II) $z + x^2 = 2^{m-1}b^4$, $z - x^2 = 2a^4$. In the case of (I) $z + x^2 = 2a^4$, $z - x^2 = 2^{m-1}b^4$, we obtain $x^2 = a^4 - 2^{m-2}b^4$, $2^{m-2}b^4 = a^4$ $-x^{2} = (a^{2} + x)(a^{2} - x), m - 2 \ge 3$, and so m \geq 5. Also note that *a* and *x* are both odd integers and relatively prime and $(a^2 + x, a^2 - x)$ = 2.

Hence there exist positive odd integers A, B with (A, B) = 1 such that

$$a^{2} + x = 2A^{4}, a^{2} - x = 2^{m-3}B^{4}$$

or

$$a^2 + x = 2^{m-3}B^4$$
, $a^2 - x = 2A^4$.
Thus, we obtain $a^2 = A^4 + 2^{m-4}B^4$, where a, A, B are odd integers. Further $m - 4 < m$ and $m - 4 \equiv m \not\equiv -1 \pmod{4}$. This contradicts the choice of m .

In the case of (II) $z + x^2 = 2^{m-1}b^4$, $z - x^2 = 2a^4$, we obtain $x^2 = 2^{m-2}b^4 - a^4$. Since $2^{m-2}b^4$ $= x^{2} + a^{4} \equiv 1 + 1 \equiv 2 \pmod{4}$, we have $m = 1 + 1 \equiv 2 \pmod{4}$ 2 = 1, so m = 3. This contradicts the choice of *m*. Hence the lemma is proved.

Proof of Theorem 2. By Theorem 5, we may assume $m \ge 1$. So if X or Z is even, Z or X should also be even, so that we may assume X, Y, Z odd. From $X^4 + 2^m Y^2 = Z^4$ follows $(2^m Y^2)^2 = (Z^4 - X^4)^2 = (Z^4 + X^4)^2 - 4X^4 Z^4$. Since X, Z are both odd integers, so is $\frac{X^4 + Z^4}{2}$, and we obtain

$$(XZ)^{4} + 2^{2m-2}Y^{4} = \left(\frac{X^{4} + Z^{4}}{2}\right)^{2}$$

where XZ, Y, $\frac{X^2 + Z^2}{2}$ are odd integers and $2m-2 \not\equiv -1 \pmod{4}$. By Lemma 9, the last equation is impossible. Hence the proof of [2] E. Grosswald: Topics from the Theory of Num-Theorem 2 is complete.

References

- [1] W. W. Adams and L. J. Goldstein: Introduction to Number Theory. Prentice-Hall, New Jersey (1976).
- bers. 2nd ed., Birkhäuser, Boston (1984).
- [3] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers. Fifth ed., Oxford, London (1979).
- [4] Y. Suzuki: Simple Proof of Fermat's Last Theorem for n = 4. Proc. Japan Acad., 62A, 209-210 (1986).