On the Diophantine Equation $x(x+1)=y(y+1) z^{2}$

By Kenji Kashihara
Department of Mathematics, Anan College of Technology (Communicated by Shokichi Iyanaga, m. J. A., April 12, 1996)

1. In [1] Mihailov investigated the equation:
where t_{x}, t_{y} are the triangular numbers associated to x, y, and k_{z} the quadrangular number z^{2}, so that (1) means:

$$
\begin{equation*}
\frac{1}{2} x(x+1)=\frac{1}{2} y(y+1) z^{2} \tag{2}
\end{equation*}
$$

The following theorem was given in [1].
Theorem 1. For an arbitrary integer $f,(4 f(f$ $+1), f, 2(2 f+1))$ is a solution of equation (2).

Mihailov proved by an elementary method this theorem, which does not yield, however, complete solution of the Diophantine equation (2). In this paper we shall give a complete solution to this equation.
2. We may rewrite the equation (2) as

$$
(2 x+1)^{2}-1=\left\{(2 y+1)^{2}-1\right\} z^{2}
$$

Put $X=2 x+1, Y=2 y+1$ then this becomes

$$
\begin{equation*}
X^{2}-\left(Y^{2}-1\right) z^{2}=1 \tag{3}
\end{equation*}
$$

Let Y be an odd integer with $Y \neq \pm 1$ and let (X, z) be an arbitrary integer solution of equation (3). Then by the theory of Pell's equation (see [2]), there exist natural numbers T, U such that

$$
X+z \sqrt{Y^{2}-1}= \pm\left(T+U \sqrt{Y^{2}-1}\right)^{e}, e \in \boldsymbol{Z}
$$

Obviously $T+U \sqrt{Y^{2}-1}=Y+\sqrt{Y^{2}-1}$ and hence
(4) $X+z \sqrt{Y^{2}-1}= \pm\left(Y+\sqrt{Y^{2}-1}\right)^{e}, e \in \boldsymbol{Z}$. We note that from equation (3), X is also odd. In case $Y= \pm 1$, we have $y=0$ or $y=-1$ and hence $x=0$ or $x=-1$. Therefore equation (4) gives all the solutions of equation (2).

Theorem 2. Define S by

$$
\begin{aligned}
& S=\{(x, y, z) \mid x, y, z \in Z, X=2 x+1 \\
& \quad Y=2 y+1, X+z \sqrt{Y^{2}-1}= \\
& \left.\quad \pm\left(Y+\sqrt{Y^{2}-1}\right)^{e}, e \in \boldsymbol{Z} .\right\}
\end{aligned}
$$

Then S coincides with the set of all the solutions of equation (2).

In the following examples we take the sign plus on the right hand side.

Example 1. In case $e=1$, we have $X=Y$, $z=1$ hence $x=y$. Therefore, for an arbitrary integer $f,(f, f, 1)$ is a solution of equation (2).

Example 2. In case $e=2$, we have $X+z$ $\sqrt{Y^{2}-1}=2 Y^{2}-1+2 Y \sqrt{Y^{2}-1}$, hence $X=$ $2 Y^{2}-1=8 y^{2}+8 y+1$ and $z=2 Y=2(2 y+$ 1), that is $x=4 y^{2}+4 y, z=4 y+2$. Therefore, for an arbitrary integer $f,\left(4 f^{2}+4 f, f, 4 f+2\right)$ is a solution of equation (2).

This confirms Theorem 1.
Example 3. In case $e=3$, we have $X+z$ $\sqrt{Y^{2}-1}=\left(Y+\sqrt{Y^{2}-1}\right)^{3}=4 Y^{3}-3 Y+$ $\left(4 Y^{2}-1\right) \sqrt{Y^{2}-1}$, hence $X=4 Y^{3}-3 Y$ and z $=4 Y^{2}-1$, that is $x=16 y^{3}+24 y^{2}+9 y, z=$ $4(2 y+1)^{2}-1$. Therefore, for an arbitrary integer $f,\left(16 f^{3}+24 f^{2}+9 f, f, 16 f^{2}+16 f+3\right)$ is a solution of equation (2).

References

[1] I. I. Mihailov: Asupra ecuatiei $x(x+1)=y(y+$ 1) z^{2}. Gazette des Mathematicients, ser. A, 78, 28-30 (1973).
[2] T. Takagi: Elementary Theory of Numbers. 2nd ed., Kyoritsu, Tokyo, pp. 316-320 (1971) (in Japanese).
[3] S. Katayama: On products of consecutive integers. Proc. Japan Acad., 66A, 305-306 (1990).
[4] L. J. Mordell: Diophantine Equations. Academic Press, London, New York (1969).

