Remark on Upper Bounds for $\left.L(1, \chi)^{\dagger}\right)$

By Shin-ichi Katayama
Department of Mathematical Sciences, Tokushima University
(Communicated by Shokichi IyAnAGA, M. J. A., April 12, 1996)

§1. Let k be a real quadratic field of discriminant Δ. Let χ be the non-trivial Dirichlet character of k and $L(s, \chi)$ the L-function attached to χ. In [2], Hua obtained the following upper bound for $L(1, \chi)$:

$$
L(1, \chi) \leq \frac{1}{2} \log \Delta+1
$$

It was shown in [7] that, in the case $\Delta \equiv 1(\bmod 4)$

$$
L(1, \chi) \leq \frac{1}{2} \log \Delta+\gamma-\frac{1}{2}
$$

where $\gamma=0.57721 \ldots$ is Euler's constant. Let $\varepsilon(>1)$ be the fundamental unit of k and h be the class number of k. From the class number formula, the above upper bounds yield respectively the following inequalities

$$
\begin{gathered}
h \log \varepsilon \leq \frac{\sqrt{\Delta}}{4} \log \Delta+\frac{\sqrt{\Delta}}{2} \\
h \log \varepsilon \leq \frac{\sqrt{\Delta}}{4} \log \Delta+\sqrt{\Delta}\left(\frac{\gamma}{2}-\frac{1}{4}\right) .
\end{gathered}
$$

We denote $\frac{\sqrt{\Delta}}{4} \log \Delta+\frac{\sqrt{\Delta}}{2}$ by $H(\Delta)$ and $\frac{\sqrt{\Delta}}{4}$ $\log \Delta+\sqrt{\Delta}\left(\frac{\gamma}{2}-\frac{1}{4}\right)$ by $W(\Delta)$, respectively. In the following, we restrict ourselves to the case when Δ is a prime p of the form $4 n+1$. In this case, T. Ono has obtained the following inequality in his paper [6]:

$$
\begin{aligned}
\varepsilon^{h} \leq \frac{2}{\sqrt{p}}(1 & +\omega)\left(1+\frac{\omega}{2}\right) \cdots\left(1+\frac{\omega}{n}\right) \\
& =\frac{2}{\sqrt{p}}\binom{n+\omega}{n}
\end{aligned}
$$

where $\omega=\frac{1+\sqrt{p}}{2}$ and $\binom{n+\omega}{n}$ is the generalized binomial coefficient.
Putting $O(p)=\log \left(\frac{2}{\sqrt{p}}\binom{n+\omega}{n}\right)$, we have an
upper bound
$h \log \varepsilon<O(p)=\log 2-\frac{1}{2} \log p+\sum_{k=1}^{n} \log \left(1+\frac{\omega}{k}\right)$.

[^0]In this paper, we shall show $O(p)<H(p)$ for any $p \geq 5$ and $O(p)<W(p)$ for $5 \leq p \leq 661$ and $O(p)>W(p)$ for $p \geq 673$. Since it is obvious that $W(p)<H(p)$ for any $p \geq 5$, we have the following theorem.

Theorem. With the above notation, we have $O(p)<W(p)<H(p)$ for the cases $5 \leq p$ ≤ 661,
$W(p)<O(p)<H(p)$ for the cases $p \geq 673$.
§2. Since the gamma function $\Gamma(x)$ is logarithmically convex (see [1]), one can easily show the following lemmas 1,2 for $0<s \leq 1$, using the functional equation $\Gamma(x+1)=x \Gamma(x)$:

Lemma 1. For any natural number n and any $s>0$, we have the inequality

$$
\frac{n^{s}}{\Gamma(1+s)} \leq\binom{ n+s}{n}
$$

Lemma 2. For any $0<s \leq n(\in N)$, we have

$$
\binom{n+s}{n} \leq \frac{2(2 n)^{s}}{\Gamma(1+s)}
$$

Combining the fact $n=\frac{p-1}{4}>\frac{1+\sqrt{p}}{2}=\omega$ for $p \geq 13$, and the above lemmas, we have

Lemma 3. For any prime $p=4 n+1 \geq 13$,

$$
\frac{n^{\omega}}{\Gamma(1+\omega)} \leq\binom{ n+\omega}{n} \leq \frac{2(2 n)^{\omega}}{\Gamma(1+\omega)}
$$

From Stirling's formula, one knows

$$
\frac{e^{\omega-\frac{1}{12 \omega}}}{\sqrt{2 \pi} \omega^{\omega+\frac{1}{2}}}<\frac{1}{\Gamma(1+\omega)}<\frac{e^{\omega}}{\sqrt{2 \pi} \omega^{\omega+\frac{1}{2}}}
$$

From the right hand side inequality in Lemma 3 and the right hand side inequality of this formula, one sees

$$
O(p)<\log \left(\frac{4(2 n)^{\omega} e^{\omega}}{\sqrt{2 \pi p} \omega^{\omega+\frac{1}{2}}}\right)<H(p)+A(p)
$$

where $A(p)=\frac{1}{2}(1+\log 16-\log \pi-\log p)$.
Since $A(p)$ is a monotone decreasing function and $A(17)=-0.102 \ldots<0$, we have $O(p)<H(p)$ for $p \geq 17$. In the cases $p=5$ and 13 , a direct
computation shows the inequality $O(p)<H(p)$. Hence $O(p)<H(p)$ for any prime $p=4 n+1$ ≥ 5.

On the other hand, from the left hand side inequality of Lemma 3 and the left hand side inequality of Stirling's formula, one sees

$$
O(p)>\frac{\sqrt{p}}{4} \log p+\frac{\sqrt{p}}{2} B(p)+C+D(p)
$$

where $B(p)=1-\log 2+\log \left(\frac{\sqrt{p}-1}{\sqrt{p}}\right)-\frac{\log p}{\sqrt{p}}$, $C=\frac{1}{2}(1+\log 2-\log \pi)=0.274 \ldots$ and $D(p)$ $=\frac{1}{2} \log \frac{\sqrt{p}-1}{\sqrt{p}+1}-\frac{1}{6(\sqrt{p}+1)}$. Since $B(p)$ and $D(p)$ are monotone increasing functions, we have

$$
B(1277)=0.0783 \ldots>\gamma-\frac{1}{2}=0.0772 \ldots
$$

and $C+D(1277)=0.241 \ldots$, and we obtain $O(p)>W(p)$ for $p \geq 1277$. Finally, a direct computation for $5 \leq p \leq 1249$ shows $O(p)$ $<W(p)$ for any prime $p=4 n+1 \leq 661$ and $W(p)<O(p)$ for any prime $p=4 n+1 \geq 673$.

References

[1] Artin, E.: Einführung in die Theorie der Gammafunktion. Verlag, Berlin (1931).
[2] Hua, L. K.: On the least solution of Pell's equation. Bull. Amer. Math. Soc., 48, 731-735 (1942).
[3] Hua, L. K.: Introduction to Number Theory. Springer-Verlag, New York (1982).
[4] Katayama, S-G.: Experimental number theory II-bounds for class number of real quadratic fields. Res. Bull. Tokushima Bunri Univ., 43, 167-199 (1992).
[5] Louboutin, S.: Majoration explicits de $|L(1, \chi)|$. C. R. Acad. Sci. Paris, 316, 11-14 (1993).
[6] Ono, T.: A deformation of Dirichlet's class number formula. Algebraic Analysis. II. Academic Press pp. 659-666 (1988).
[7] Stanton, R. G., Sudler, C. and Williams, H. C.: An upper bound for the period of the simple continued fraction for \sqrt{D}. Pacific J. Math., 67, 525-536 (1976).

[^0]: *) Dedicated to Professor Hiroaki Hijikata on his 60th birthday.

