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Degenerating Problem with Directional Derivative for
Quasilinear Elliptic Equations of Second Order

By Dian K. PALAGACHEV*) and Peter R. POPIVANOV* *)

(Communicated by Kiyosi IT(3, M. J. A., April 12, 1996)

Abstract: Classical solvability and uniqueness in the HOlder space C+a(f2) is proved for
the oblique derivative problem

ai(x)D,u+ b(x, u, Du) 0 inD, Ou/Ol= i(x)Diu= p(x) on 0S2
i,j=l i=

in the case when the vector field l(x) (/1(),..., ln(x)) is tangential to the boundary 92 at
the points of some non-empty set S c 9, and the nonlinear term b(x, u, Du) grows at most
quadratically with respect to the gradient Du.

Key words: Quasilinear elliptic operator; degenerate oblique derivative problem; a priori
estimates; Leray-Schauder fixed point theorem.

Introduction. In this paper we study the 1. There are three possible behaviours of
so-called oblique derivative problem firstly posed l(x) near the set S {x o/2 ?’(x) 0}:
by H. Poincar ([15]): given a domain [2, find solu- a) l(x) is of neutral type: 9"(x) 0 or ’(x)
tion of elliptic differential equation in 2 that satis- <-- 0;
ties boundary condition in terms of directional de-
rivative with respect to vector field defined on the
boundary [2. More precisely, we shall be con-
cerned with the problem

ai(x)Diu + b(x, u, Du) 0 in
(1) i,j--1

u /l =-- X (x) Du p(x) on
i=l

b) l(x) is of emergent type: the sign of 9"(x)
changes from to 4- in the positive
direction on the v-integral curves through
the points of S;

c) l(x) is of submergent type: the sign of

7"(x) changes from 4- to- along the
v-integral curves through S.

H6rmander’s results were refined by Egorov
in the degenerate case, i.e. the vector field l(x)- and Kondrat’ev [5] who proved that the linear
(/l(x) ln(x)) prescribing the boundary problem (1) is of Fredholm type in the case a).
operator becomes tangential to at the points Moreover, they showed that either the values of
of some non-empty set S. u should be prescribed on S in order to get un-

The linear tangential problem (b(x, z, p) iqueness in the case b), or to accept jump discon-
n=x b (x)p q-c(x)z) has been very well studied tinuity on S in order to have existence in the

in the last three decades. The pioneering works case c). What is the common property of the
of Bitsadze [3] and H6rmander [10] indicated the linear problem (1), independently of the type of
dependence of solvability and uniqueness prop- /(x), is that a loss of regularity of solution arises
erties on the way in which the normal component in comparison to the regular (S 0) oblique
of l(x) changes its sign across S. More precisely, derivative problem.
suppose S to be submanifold of of2 of co- Later, precise studies were carried out in
dimension one, and let l(x) v(x) -+-’(x)(x), order to indicate the exact regularity that solu-
where p(x) is the unit outward normal to , tion of the linear problem (1) gains on the data
and v(x) is a tangential field such that I(x) both in Sobolev and H61der spaces [4], [6], [12],
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[13], [191, [221-[25], and most recently [7], [81.
The investigations on the quasilinear prob-

lem (1) (especially, in the weak nonlinear case
b(x, z, p) i--.1 bi(x, z)pi q- c(x, z)) were in-

itiated in the papers [16], [17]. In our previous
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study [18] classical solvability results were Sawyer [8]. At the end, uniqueness for the solu-
proved for (1) both in the cases of neutral and tions of (1), (2)follows from the maximum princi-
emergent C-vector field l(x) supposing C ple.
structure of the elliptic operator. Moreover, we 1. Statement of the problem and main re-
have assumed that l(x) has a contact of order k suits. Let /2 Rn, n _> 2, be a bounded do-
< oo with an, and lb 1, bxl- o(Ip I- main. On the boundary O a unit vector field
o([ p 1), b,] o(1 p [) as [pl oo uniformly l(x) (1(x), In(x)) is defined, which can
on x and z. be decomposed into

The aim of the present article is to improve l(x) z’(x) 4- 7"(x)(x) x
the results of [18] weakening the growth assump- where )(x) is the unit outward normal to oQ and
tions on b(x, z, p) with respect to p. Consider at z-(x) is the tangential projection of l(x) on
first the ease of emergent field l(x). According to Let
the above mentioned result of Egorov and Kon- S {x /2: )’(x): 0}
drat’ev, we consider the problem (1) supplied be the set of tangency between l(x)and #.
with the additional condition Throughout the paper we consider the case S
(2) u b(x) on the set of tangency S. 0. In order to describe our technique, we shall
About the problem (1), (2) we prove solvability consider the case of emergent field l(x) only. In
and uniqueness in the HOlder space Ca+’’() other words, we suppose that the sign of the nor-
assuming a

iy Ca(), b(x, z, p) Ca(2 R mal component )’(x) changes from to + in the
Rn), Ca+(Q) and b(x, y, p) <- p(I u[) positive direction on the integral curves of the

(1 +1/9 ) with a non-decreasing function p (no field v(x) through the points of S. Moreover, to
growth assumptions on the derivatives of b are avoid unessential complications, we assume that
made ). Further, suitable conditions due to P. S is a closed submanifold of , codimo9S 1,
Guan and E. Sawyer [8] on the behaviour of 0.Q + U .Q_ U S where 0.Q+--{x
l(x) on 0/2 are imposed. It is worth noting that 7(x)0}, and let the field l(x) be strictly trans-
our growth condition on b(x, z, p) includes versal to S at each point x S (indeed, l
those in [18], as well as the natural structural there).
conditions in the treatment of regular oblique de- We aimed at the investigation of the classic-
rivative problems for nonlinear elliptic equations al solvability of the degenerate oblique derivative
(see [111). The case of neutral field on 1"2 will be problem:
studied too. a(x)Du + b(x, u, Du) 0 in

To fix the idea we discuss the problem (1), (3) Ou/Ol =-- l(x)Du-- q0(x) on

(2) only. The main tool in proving our results is u (x) on S.
the Leray-Schauder fixed point theorem, that re- Hereafter, the standard summation conven-
duces solvability of (1), (2) to the establishment tion is adopted and Du (Du,..., Dnu) is the
of a priori C l+B (.o) -estimate for the solutions of gradient of the function u(x), where D =-
related problems. The bound for u [Ico()is a Further, the symbol Cq(,O), q > 0 non-integer,
consequence of the maximum principle. In order stands for the H61der space equipped with the
to estimate the Cz(.o)-norm of the gradient Du norm I[" [[c,()(see [9]). The letter C will denote a
we use an approach due to F. Tomi [20](see [1] constant, independent of u, that may vary from
also) that imbeds the problem (1), (2) into a fami- line to line.
ly of similar problems depending on a parameter In order to state our result, we give .a list of
p [0,1] and having solutions u(p;x). Then the assumptions.
norm Du c(5) Dxu(1 ;x) can be esti- Uniform ellipticity: there exists a positive
mated in terms of ]1Dxu(O;x)I1() after itera- constant/ such that
tions on p, assuming the difference u(p;x)- (4) a(x)>_ 2][ V x,O, V

aJu(p, x)to be under control for small p- p. --a
To realize this strategy, we use the refined Regularity conditions: for some cr (0,1)
sub-elliptic estimates in Sobolev and H61der
spaces proved very recently by P. Guan and E.
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au C(D),
b(x, z, p) C() x R x Rn),

(5) b(x, z, p) is continuously differentiable
with respect to z and p,
l(x) C+(Ot2), 2 + S C+"

Monotonicity condition" there exists a positive
constant bo such that
(6) bz(x,z,P) bo < O V (x,z,p) x R x R"’,

Quadratic growth with respect to the gradient"
there exists positive and non-decreasing function
p(t) such that
(7) Ib(x,z,P)[ N(lzl)(l+lP[)

V (x,z,p) D x R x
Let w(t,x)be the parametrization of the

v-integral curve passing through the point x
d

Dg, i.e. w(t, x) v(w(t, x)), w(0, x) x.

The next notions were introduced by P.
Guan and E. Sawyer in [8].

Definition 1. The vector field l(x) satisfies
condition on S if for each y S there exist
positive constants r > 0, R- < 0 < R + such
that r(w(R-, x)) O, r(w(R +, x)) 0 for all
x S, [x--yl < r and both of the following
conditions hold"

, r(w(t, x)) d
r(w(t, x)) dt

c t t r((t, x)) dt

for all z S, z-- g < f and all 0 < t < t
< ta < N+ with r((t, x)) dt r((t, zl)

dr, and also

[ 1 ]’-
[r((t, x)) dt ’

c t- t It(re(t, z))ldt

for all z S, [z--l < f and all R- < t
< t < t < 0 with

Definition . The vector field l(x) satisfies
the condition 0 if

t- t, K C r(w(t, x))ldt

for all t < t and x .
Our final assumption concerns the behaviour

of l(x) on 89"

The vector field l(x)satisfies conditions

(8) and
for some q > n and 0 [0, 1), 0 =/= cr.

We are in a position now to state the main
result of the paper.

Theorem 1. Suppose assumptions (4) (8) to
be fulfilled.

Then the degenerate oblique derivative problem
(3) admits a unique classical C2+a() solution for
each C2+a-(9) C+a (S)

Remark 1. Requirements in (5) on b(x, z, p)
to be diffferentiable with respect to z and p may be
replaced by the Lipschitz continuity in z and p.

2. Quadratic growth assumption (7) includes
for example the natural conditions in studying

the regular oblique derivative problems for fully
nonlinear elliptic operators (cf. [11]), as well as

the structure conditions on b(x, z, p) imposed in

3. Conditions f and correspond to the
requirement of "finite type" vector field in the
C case (cf. [6], [7], [18]). In fact, supposing
C, C, we say that the field l(x) is of fi-

nite type if there exists an integer k, such that

=, Or’
r((t, x))

=o
> 0 for allx

Indeed, the number k is exactly the order of con-

tact between the field and .
Now, if is of type k, then Lemma C.1 in

1
[21] implies condition with 0 k+l
Moreover, it follows from [7] that condition is

satisfied for all p in the range (1, ).
4. Due to the tangency of l(x) to the con-

dition 0 is valid with 0 < 1.
In the case of neutral vector field l(x), the

following result holds true.
Theorem 2. Let assumptions (4)-(8) be fulfil-

led. Suppose further that l(x) is of neutral type and
K(x) r(x) 0 on 9, K(x) Ko const >
0 on 9 with K C2+a().

Then the degenerate oblique derivative problem
a (x)Du + b(x, , D) 0
O /Ol + K(x) . p (x) on OD

admits a niqe classical solution C+()
for each p C+-(0D).
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