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with the Confluent Hypergeometric Function (2
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1. Introduction. Consider the confluent
hypergeometric function

(1) q2(fl, fl’, 7",x,Y)-- Z (7.) (1) (1) x y
m,n 0 m+n m n

convergent for xl (,lYl < oo, in which

()m 1"(15 + m)/F() (el. [3]). This function
satisfies a system of partial differential equations
(2) XZxx + yZx + (r- x)z- flz O,

yz + XZx + (7"- y)z- fl’z O,
which possesses the singular loci x- 0, y- 0,
x- y- 0 of regular type and x-- oo, y c of
irregular type. The solutions of system (2) consti-
tute a three-dimensional vector space over C. In
what follows, we assume that none of the com-
plex numbers fl, fl’, 7.--fl--fl’,fl-- 7.,/’-- 7.,
and fl +/’ is an integer, and use the notation

(2)
e exp(2rci2).

It is known by Erd6lyi [1,2] that, near the
singular loci of irregular type, system (2) admits
convergent solutions as follows"

Uo (, f’, r, x, ) ({xl< o, I1< o),

Yl XB’-r+l -B" i
fl’ r + 2, x/y, x)

X
B’-7"+l (y X)-B" X

(Ixl < Ix- 1),
U2 X-IyZ-r+l

,( + ’- r + , , t-r+ 2, y/x, y)
(lyl < Ixl),

v x+’-(y- x)1--’eX (1 fl, r- fl
2 fl-- fl’, (x-- y)/x, y--x)

(Ix-l <
WI Y (, 7" + 1, r- 1, X/y y)

([xl <lyl)
(y x)-eXG(r- ’, " r + ,

7"--1, x/(y-- x), x-- y)

W X -rFi(i’, fl 7" + 1, r 1, y/X, X)
([[ < Ixl),

-reXW3--X X

F(’, - ’, r- , (- x)/x, x)
(Ix- yl < Ixl),

where
(Ol) m+n () m ra nqh(a,f,r,x,y)= Z (r) () () x y,

m,nO m+n m n

m nm-n x y1"1(0l, , X, y) Z
(Ol) m ()n-m

m,nO (1)m(1)n
are convergent for xl< 1, yl< oo. Hence we
have triplets of linearly independent solutions

(Uo, vl, wl) (in the domain xl < yl or

Ix- Y I), (Uo, v., w.) (in the domain
and (uo, v3, w3) (in the domain Ix-- y l<lx

On the other hand, in [4,5], we chose linearly
independent solutions expressed as

(1 e())-( f(x, y, t)dt,() Z+
(x)

(’-B-B’)) -1 fC(4) z0 (1 e f(x, y, t)dt,
(0)

(5) Z_---- (1 e(’))-i( f(x, y, t)dt,
ac(g)

with

(6) f(x, y, t) tE+’-r(t x) (t y)-Z’e
and examined the asymptotic behaviour of them
near the singular loci x-- oo, y oo of irregu-
lar type. Here the paths of integration and the
branch of the integrand are taken in such a way
that, in the case where
(7) 0 < argx< 7r< argy< 27r,

7r < arg(y- x) < 2r,
they have the following properties"

(i) C(a) (a O, x, y) is a loop which

starts from t --c, encircles t-- a in
the positive sense, and ends at t c.

(ii) C(x) lies over C(O), and C(y) lies
under C(O) in the t-plane.

(iii) The branch of f(x, y, t)is taken such
that arg t arg(t- x) arg(t- y)

7r at the end point t- c of each
path of integration.

In this paper, we calculate connection
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formulae for these solutions. Combining our re-
sult with [4,5], we can see the global behaviour
of them in pl(c) x pI(C).

2. Result. Let z-- z(x, y) be a column
vector function defined by t(z+, zo, z_). Then we
have the following result.

Theorem. We have uo aoZ, v-- bz, w
ez (j 1,2,3), where ao, bl, el are row vectors

listed below"

F(7) <,) e<,) e<r-,’),ao= 2i (1-e e

F(r) V(5)V( 5)’
e

F(7-/9 fl’)F(1 7 + fl + fl’)’
e )F(fl’)V(1 fl’)

e<e-e’)F(fl’- r + 2)
b, V(1 fl)F(fl +/9’- 7 + 1) (1, 1,0),

e F(/3- r + 2)
bz=F(l_fl,)F(fl+fl,_7+l) (0, 1, -1),

e-=’V(7-/- 5’)V(2 7)

(7-fl’)n’i

F(fl’) V(1 fl’)

x
27r/F(1 fl- fl’)

(B) (r) (r-B’) (B) (r) (r-B’)(e --e ,e --e ,e --e

v(r 5 59V(2 r)
V(1 -/3 139

x

(B-B’)e
r(r-5- 5’)r(1 r +/9 + t’)’

(r-B’)r

F(fl’) V(1 fl’) )"
3. Proof of Theorem. For example, we

verify the relation w e. The others are
shown by similar arguments. By the theorem of
identity, it is sufficient to show the relation for
(x, y) satisfying (7) and Il>lzl. By [4;
Corollary 2.3, (2) and 5:5], we have
z(x, yeTM) M2Moz(X, y) in the domain

Ix 1, where
(8) M,Mo=

(-B’)
e 0 1 e

(-’) (-B’)
0 e 1--e

Since wx w(x, y) satisfies w(x, ye=)
(--7)

e
(-

C1.e w(x, y), it follows that cM.Mo
Hence c is written in the form

(g) (r-fl’)),(9) C /(e (/)
1, e r-z’> e i e

for some complex constant . To calculate to, we
may assume that Re/3 < 0, Re/3’ < 0, Re(/3 +
/3’-- 7) > 0. Substituting (3), (4), (5) and (9) into

w clz, and putting x 0, we have
(10) yX-r(1 q- O(y))

c(e(r-’- 1) t’-(t- )-Wedt
near y--0, where the path of integration is a

segment from t 0 to t y, and the branch of
the integrand is taken such that arg t argy,
arg(t--y) =argy-- rr(rr< argy< 2rr) along
it. If we put t ys in (10), then arg s 0, t- y

e //(1-- s), where arg(1-- s) 0 for
0 < s < 1. Hence (10) is written in the form

e’(e(r-’- 1) s’-r(1- s)-’eSds 1 + O(y),

from which we derive

e-r’F(7 fl’) F(2 7")
c 2rciV(1 fl’)

Thus we have obtained the desired relation.
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