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1. Introduction. The class number of an

imaginary abelian number field is divisible by
that of its maximal real subfield and the quotient
is called the relative class number of it.

Let p be an odd prime number. For a ration-
al integer a prime to p, we denote by R(a)the
least positive residue of a modulo p. Then Mail-
let’s determinant Dp is defined by

Dp R(ab’) ]lNa,bNr,
where r (p- 1)/2 and b’ is a rational integer
which satisfies bb’ 1 (modp).

Let Q and be the field of rational numbers
and a primitive p-th root of unity, respectively.
Carlitz and Olson [1] proved that D is a multiple
of the relative class number h2 of the p-th cyclo-
tomic number field Q(). This result has been
generalized to more general imaginary abelian
number fields [8], [11], [12], [15], [16].

On the other hand, recently Hazama [10]
showed that the determinant of the Demjanenko
matrix provides the formula for h;. The Dem-
janenko matrix is defined by

(C(ab))aa,<r;
herein for a rational integer a prime to p C(a)
1 if R(a) < p/2, and C(a) --0 if R(a) > p/2.
Hazama’s formula has been also generalized to
more general imaginary abelian number fields of
odd conductors [2], [7], [9], [13].

In the previous papers [3], [4] we investi-
gated the Stickelberger ideal of quadratic exten-
sions of () and obtained a formula for the re-
lative class number of such imaginary abelian
number fields. Our formula is expressed as a

product of two determinants of degree r. In this
paper we consider the Demjanenko matrix and
show a new relative class number formula ex-

pressed as a product of two determinants of de-
gree r.

*) Dedicated to Professor Katsumi Shiratani on his

63rd birthday.

2. Statement of the theorem. Let m be a
square-free rational integer such that m------1
(mod 4), and d its absolute value. We consider
the quadratic extension K Q(, /-) of Q()
obtained by adjoing v/. We may assume without
loss of generality that m is prime to p. Let Z be
the ring of rational integers and N the subgroup
of the multiplicative group (Z/dZ) correspond-
ing to Q(/-) by Galois theory’ then the Galois
group G of K/Q is isomorphic to the direct pro-
duct of the multiplicative group (Z/pZ) and the
quotient group (Z/dZ) /N.

For each I _< a <_ p 1 we choose a ration-
al integer a* *prime to dp so thata ------ a(modp)and 1", 2",. (p 1)* form a complete system
of representatives for G/{+__ 1}" then we see
(p-- a)* a (rnodN) and we may take
1"=1.

Now, for a rational integer a prime to dp we
(K) t(K)

denote by Ca and c a respectively the number
of 1 <x<_ (dp-- 1)/2 such that x--= a(mod
p) and x= a(modN), and that of (@+ 1)/2
<--x<-- dp-- 1 such thatx---- a(modp) andx--=
a(mod N). We define the Demjanenko matrix for
Kby

Ca,b, C la,bNP-1

[2], and denote its determinant by H (>.
Let X be the group of the primitive Dirichlet

characters associated with Q(-), and further

Zo X the principal character of conductor d.
For any Z X and a rational integer a prime to
p, let

and

(dP-1)

Ca ()(.) Z
/2

(a). (X)
x=l

dP-1

C() z. (x),
x--(dP+l)/2

where (a) indicates that x runs through rational
integers in the assigned interval which are prime
to dp and congruent to a modulo p. We then de-
fine a determinant H(Z) of degree r by
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Cab(Zo) C;(Zo)]Xa,b_r if X Xo,ttp(X) Cab(X) Ixa,br if Z Zo.
Let be a primitive Dirichlet character of

degree - 1 associated with 0(). For 1 E
E- 1 let

B,, x= (x)x

and

()(x)x, X- {0)B,, dp
be the generalized Bernoulli numbers belonging

amd X, respectively. For a prime number
let fi be the order of modulo p.

Theorem 1. With the notation above we have
the following"
(1) H<= H H(X).

xX

(2) H(Zo) 0 ff and only ff fi 0 (mod2) for
any prime divisor I of d, in which case

1IH(Zo) 2 H 2’-’)/z’ (2 ’-’(2))
where H means the product taken over all prime

divisors of d.
(3) Let Z X-- {Xo}. H(Z) 0 ff and ona if
m > 0 or Z(P) 1, in which case

IH(x)

2 1(2 (’ 1

Remark. It is well known that X(2)
(- 1) (-)/ for X X-- {Xo}, and further it is
easy to see that the following holds:

=1

(2/ + 1)-/ if f 0 (mod 2),

(2- 1)-/ iff 1 (mod 2),

(2 ’(2))
=1

[ (2/ 1)-/ if f 0 (mod 2),

(2- 1) -/] iff 1 (mod 2),

(2 + ’-’ (2))

(2/ + 1)-/ if f 0 (mod 4),

(2/- 1)-/ iff 2 (mod 4),

(2+ 1)-/ if f 1 (mod 2),

{I (2 + "(2))
i=l

(2y’/z 1)(P-)/Y2 if fz 0 (mod 4),
(22/ + 1)-/ if f 2 (mod 4),

(2z + 1)- iff 1 (mod 2).
Let Q be the unit index of K (cf. [17]).

When m > 0, that Q 1 follows from the fact
that a prime ideal dividing p in Q( + -,
) is ramified in K. Then the following corol-
lary is an immediate consequence of the analytic
formula for the relative class number h of K
and the above theorem together with the remark
(cf. [51).

Corollary. If H H(Z) O, then
xX

In H(z)
2

zx .4,F H 2-)/’h ff m < O.QKWK
Herein w 6p or 2p according as m 3 or

not, and when m > 0
(2/2 + 1)-/

if m 1 (mod 8), f 0 (mod 2),
orm 5 (mod8),0(mod4),

(2z 1)
F=

ifm 1 (mod8),fz l(mod2),
or m 5 (mod8),2(mod4),

(2 1)
ifm 5 (mod 8), 1 (mod 2),

and when m < 0
(2/z + 1)z-/

if m 5 (mod 8), f 2 (mod 4),

F (2 1)
if m 1 (mod 8) orA 0 (mod 4),

(2z 1)-/z
if m 5 (mod 8), fz 1 (mod 2).

3. Proof of the theorem. In this section we

give the proof of Theorem 1.

Proof of Theorem 1. (1) Since

c_ 1
Ca + 7 (d),

where q9 is the Euler function, for any rational
integer a prime to dD,

(K)
Ca,b,- C(,K

(K) 1 I
Ca, , - o d) ) C :K) -’ 9 (d)

Hence we have
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Ca*b* a,b p-

1 (K) t(K)21-(co,, c,a,2 ]a.a,-.
Since (p--a)* a*(mod and (p-- b)*

3" (mod, we have a*(#- b)* (#- a)*b*
(mod and (p-a)*(p-b)*a*b*(mod,
which implies

(K) (K)

a*(P-b)* C(P-a)*b*,
and

(K) (K)
C(p_a),(p_b), Ca,b,

Thus we see

where

(K) t(K)
Ca,(P_b) , C(p_a),b,

(K) (K)
C(p-a)*(p-b)* a*b*"

A B
BA’

A (-" (K)
(,Ca,b, Caab,

l<a,b<r

B tc,(_),- c,(_),)
la,b<r

Further it is easy to see that for a rational integer
x the two conditions

1
2 (dp+l) <_x<_dp-- 1, x=- -ab(modp),

,
x--= a (p-- b) (modN)

and
1

1 <dp x <_ - (dp 1), dp x ab (mod p),

*b*dp x a (mod N)
are equivalent. Hence we have

(K) ,(K)c,, + Ca*(_)* C(o)
and

(K) ,(K)
c,(_),= Z" "ta*o*)C:tZ), Z X- {zo).

Similarly we have
(K) (K)

c,,, + c,,(_), C,(Xo)
and

(K) (K)

Ca**- C,,_), a*o*%X, X X-- (Xo).
These imply

1 (K) ,(K)\ I (K) (K) ,)- (a*O* Ca*O*) " ,Ca*(p-O)*

1- (c. (o) cL (o))

and- (Ca*o* Ca*o*) + - (a*(-o)* a*(-o)

1 b*)g(a (C(x) Ca(X)) X--

Therefore an easy calculation on rows and col-
umns of determinants shows

H- 2 (C(o) C;(Xo))

1 *b*)z(a (Cao(Z) Cab(X))
la,br

-ff (Co(Zo) C;(Zo)) ,- (c(z) CL(z))
la,br

where X X-- (go}. Since
(p (d) if

Ca(Z) -I-

for any rational integer a prime to p, we have
1 1
(C(Zo) C;(Zo)) + g (C(Zo) C(Zo))

Cb(Zo) C;(zo)
and
1- (Cab(Z) C;b(Z)) Cab(X), X X-- (,o).

Hence we obtain
H () II H(Z).

xX

(2) From the above we see

H (go)
1

2r_
Cao(Xo) Cab (Xo) I <_,r

+ 1... [(ab’)(C,e,(Xo) C,(Xo))
2r_ r"

It can be easily seen that
(a) (Ca(Zo) C(zo))

is a function on (Z/DZ)/{+- 1}. Hence by the
formula for abelian group determinant (cf. [17])
we obtain

(ab’) (Cb, (Z o) C, (Z o) Ix <_,
fi (Dz’-l(a) (Ca(Zo)
i=l a=l

p-1

2i{I - (a) Ca (ZO) t_ Z -1 (a) C. (Xo))
i=l a=l a=r+l

P-1 (alP-l)

II Z Z (a)2i--1 (X) Z (X)
i=1 a=l x=l

fi Z 2i-1 (X)
i=1 l<x(dP-1)/2

(x,dP)

It follows from an easy calculation that
1 2i-Z 2,-x (x) dp (2 x(2))

x(alP-l)
(x,dP)

Z -’ (x)x
l<xdp-1

(x,pd) =1

(cf. [6]). Further it is well known that
1 Z 2i-I(x)x II (1- (/)2i-1(1))B1,2,-1dp
lxdp-1 lid

(x,d#

(cf. [41). Since

{I (1 .,-x(/)) {2 (-x/’ if f 0 (mod 2),
i--1 0 if f 1 (mod 2),
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our assertion is obtained.

(3) The assertion of the third part is also
obtained by the way similar to the above.

4. The case where m 3. In what fol-
lows we assume m 3 and so d 3. For a
rational integer a prime to p, we denote by
R’(a) a rational integer which satisfies R’(a)

a (modp) and 1 R’(a) <- r. Let
C (a)

1 if 1 < R(a) <- r, R’(a) =- 10 (mod 3),
-1 ifr+l-<R(a) <10 -1, R’(a) =-10 (mod 3),
0 if R’(a) p (mod 3)

and put
C (aO) [la,br"

Further let
1 if R’(a) p- 1 (mod 3),

G<3)(a) 1 ifR’(a) =p+ l(mod3),
0 if R’(a) =- p (rood 3)

and put
(ab) IIa,br"

Then it is easy to see that
1

C’(a) - (Ca(Zo) C(Zo))

and
G <)(a) C(x), Z x- {Xo).

Let h,_ denote the relative class number of
Q(,v/- 3). Noting that QK= 2 for K= Q(,
v/- 3) and that when p 2 (mod3),f3-- 0
(mod2) if and only if p 5(mod12), the fol-
lowing theorem is established immediately from
Theorem 1 and its corollary.

Theorem 2. With the notation above we have
the following"

1
2(P-1,/fa ii (2_ 2i-1 (2))-B,,**,-

/../(3)[ i=1-- iff =- 0 (mod 2),
0 iff 1 (mod 2),

1
(3) i=1G [=

ifp -- 2 (mod3),
0 ifp -= 1 (mod 3),

F (-1)/I3h-
[" "" /fp 5 (mod 12),

0 ifp 5 (mod 12),
where X X-- {X o} and

(2I2- 1)-1>/. iff =-- 0 (mod 4),
F (2/2 + 1) p-1)/2 iff -= 2 (rnod 4),

(2- 1)-)/ iff2-- 1 (rood 2).

We conclude this paper with quoting another
formula for h;,_3 expressed as a product of two
determinants of degree r which is to be compared
with the above one and is proved from the re-
sults of [31, [4] by the same way as used in [5].
For a rational integer a prime to p, we denote by
R<3)(a) a residue of a modulo p such that

2p /3 < R (3) (a) < 2p /3 and R (3) (a) -= 0
(mod 2) or p/3 < R<3)(a) < p/3, and put

(ab’) [i<.,<_r"
Further let

1 if R () (a) 0 (mod 2),V(a)
-2 if R(>(a) 1 (rood 2)

and put

V V(ab’) [la,br"
Then the following holds:

if 0 (mod 2),
0 if 1 (rood 2),

1

lEvi- 2"3rl
i=1
fi - B,,,

0

1
it) (3)

(3p)r_
[*--p "Vpl

where X X-- (Xo}.

if p --= 2 (rnod 3),

if p 1 (mod 3),

if p 5 (mod 12),
0 if p 5 (rood 12),
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