On the Degrees of Irrationality of Hyperelliptic Surfaces

By Hisao YOSHIHARA

Faculty of Science, Niigata University (Communicated by Heisuke HIRONAKA, M. J. A., March 12, 1996)

1. Let *L* be a field, which is a finitely generated extension of a ground field *k*, and assume that $tr.deg._kL = n$. We denote by $d_r(L)$ the degree of irrationality of *L* over *k*, which is defined to be the number (cf. [2], [5]):

 $\min \left\{ m \middle| \begin{array}{l} m = [L:k(x_1,\ldots,x_n)], \text{ where } x_1,\ldots, \\ x_n \text{ are algebraically independent ele-} \\ \text{ments of } L. \end{array} \right\}$

We call the field $k(x_1, \ldots, x_n)$, which defines the value $d_r(L)$, a maximal rational subfield of L and write m.r.subf. for short. For an algebraic variety V defined over k, we define the degree of irrationality of V to be $d_r(k(V))$, where k(V) is the rational function field of V. Clearly it is a birational invariant of algebraic varieties. In other words it is the minimal degree of a dominant rational map from V to the projective n-space. Hence, when n = 1, it coincides with the gonality of a curve. In case k is not algebraically closed, for example k = Q, we feel a great interest in the value d_r . Because, d_r seems to have some relations with the least number [k':k] such that the variety V has many rational points over k' (see, e.g. [1]). But it is very difficult to find this value. We assume that k = Chereafter. In this note we announce the results for $d_r(S)$ of hyperelliptic surfaces S. Details will appear elsewhere.

2. Let S denote a hyperelliptic surface. Of course we have that $d_r(S) \ge 2$. First we give examples.

Example 1. Let A_i (i = 1,2) be the abelian surface defined by the following period matrix:

 $\begin{aligned} \mathcal{Q}_1 &= \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 0 & \beta \end{pmatrix} \text{ or } \mathcal{Q}_2 = \begin{pmatrix} 1 & 0 & \alpha & 0 \\ 0 & 1 & 1/2 & \beta \end{pmatrix}, \\ \text{where } \Im \alpha \neq 0 \text{ and } \Im \beta \neq 0. \text{ Let } g \text{ be the automorphism of } A_i \text{ defined by} \end{aligned}$

$$g(z_1, z_2) = (z_1 + 1/2, -z_2).$$

Then $g^2 = id$ on A and $S_i = A_i/g$ is a hyperelliptic surface. Moreover letting $h(z_1, z_2) = (-z_1, z_2)$, we see that h defines an automorphism of S_i and S_i/h becomes a rational surface. Note that A_i/h and A_i/gh are (birationally equivalent to) a ruled surface with irregularity 1 and a K3 surface respectively (cf. [6]).

Let K_s and \sim denote the canonical divisor of S and the linear equivalence of divisors respectively. Then we have the following

Lemma 2. Suppose that there is an automorphism φ of S with an order $d(\neq 1)$ such that S $/\varphi$ is rational. Then d = 2,3,4 or 6, and moreover the following facts hold true:

(1) If
$$d = 2$$
 or 4, then $2K_s \sim 0$

(2) If d = 3, then $3K_s \sim 0$.

(3) If d = 6, then $2K_s \sim 0$ or $3K_s \sim 0$.

Using this lemma, we obtain the following

Theorem 3. $d_r(S) = 2$ if and only if $2K_s \sim 0$, i.e., S is isomorphic to one of the surfaces in Example 1.

Before considering other surfaces, we present some more examples.

Example 4. Let A_i (i = 1,2) be the abelian surface defined by the following period matrix:

$$\Omega_{1} = \begin{pmatrix} 1 & 0 & \omega & 0 \\ 0 & 1 & 0 & \omega \end{pmatrix} \text{ or }$$
$$\Omega_{2} = \begin{pmatrix} 1 & 0 & (\omega - 1)/3 & 0 \\ 0 & 1 & (\omega - 1)/3 & \omega \end{pmatrix},$$

where $\omega = \exp(2\pi\sqrt{-1}/3)$. Let g_i be the automorphism of A_i defined by

$$g_1 z = (z_1 + (\omega + 2)/3, \omega z_2)$$
 and
 $g_2 z = (z_1 + 1/3, \omega z_2),$

where $z = (z_1, z_2)$. Then $g_i^3 = id$ on A and $S_i = A_i/g_i$ is a hyperelliptic surface. Moreover letting $h_1 z = \omega z$ and $h_2 z = (\omega z_1, \omega z_2 + 2/3)$,

we see that h_i defines an automorphism of S_i and S_i/h_i becomes a rational surface. Note that A/h, A/gh and A/gh^2 are (birationally equivalent to) a rational surface, a K3 surface and a ruled surface with irregularity 1 respectively, where we put $A = A_i$, $g = g_i$ and $h = h_i$.

These examples are unique in the following sense.

Theorem 5. For hyperelliptic surfaces S the following conditions (i) and (ii) are equivalent:

(ii) S is isomorphic to one of the surfaces in Example 4.

Remark 6. (1) The inequality $d_r(S) \ge 3$ in [5, Theorem 3] for a hyperelliptic surface is an error, which is resulted from dropping the consideration of one possible case in the proof p. 636.

(2) The abelian surfaces A_i in Example 4 are isomorphic to $E_{\omega} \times E_{\omega}$, where E_{ω} is the elliptic curve $C/(1, \omega)$. This abelian surface is the unique one satisfying that $d_r(A) = 3$ and k(A) is a Galois extension of some *m.r.subf.* (cf. [4]).

Now we consider the remaining surfaces. Let Bs | D | denote the set of the base points of the complete linear system | D |. In order to determine d_r , we use the following

Lemma 7. Suppose that there is a smooth curve C of genus g on S satisfying one of the following conditions (i) or (ii). Then $d_r(S) \leq g$.

(i) g = 3, or

(ii) $g \ge 4$ and $Bs | C | = \emptyset$.

Following the table in Suwa [3, Theorem], we classify hyperelliptic surfaces into 7 classes as follows: Let n be the least number satisfying $nK_s \sim 0$. Then n = 2,3,4 or 6. Corresponding to these numbers, we say that S is of type I, -II, -III and -IV respectively. Moreover we divide S into a class (i) and -(ii), if the period matrix of A (which is an unramified covering of S of degree n) is represented as a product type or not respectively. Note that if S is of type IV, then it necessarily belongs to the class (i).

Now, we have two fibrations $f_1: S \to E$ and $f_2: S \to \mathbf{P}^1$, where f_1 [reap. f_2] defines a structure of elliptic fiber bundle over an elliptic curve E [resp. elliptic surface over a rational curve \mathbf{P}^1](cf. [3]). Let F_i be a general fiber of f_i , and put $\mathbf{r} = (F_1, F_2)$, which is the intersection number of F_1 and F_2 . Corresponding to types I, II, III and IV, we have that $\mathbf{r} = 2,3,4$ and 6 in the

class (i), and r = 4,9 and 8 in the class (ii) respectively.

Letting mF'_2 be a multiple fiber of f_2 in each type, where m is the largest integer in the multiple fibers of f_2 , we put $r_0 = (F_1, F_2)$. Then we infer easily that $r_0 = 1$ in the class (i). On the other hand in the class (ii) we have that $r_0 = 3$ and 2, corresponding to type II and III respectively.

Using the divisor $D = F_1 + F'_2$ or $F_1 + 2F'_2$ and considering a general member of the complete linear system |D|, and combining the results above, we can conclude the following

Theorem 8. The degree of irrationality of S is given in the following table:

	(i)	(ii)
Ι	2	2
II	3	3 or 4
III	3	3
IV	3	

Note 9. We do not know whether the value 4 is taken in case S belongs to type II and class (ii).

References

- [1] O. Debarre and R. Fahlaoui: Abelian varieties in $W_d^r(C)$ and points of bounded degree on algebraic curves. Compositio Math., 88, 235-249 (1993).
- [2] T. T. Moh and W. Heinzer: On the Lüroth semigroup and Weierstrass canonical divisors. J. Algebra., 77, 62-73 (1982).
- [3] T. Suwa: On hyperelliptic surfaces. J. Fac. Sci. Univ. Tokyo, Sect. IA, 61, 469-476 (1970).
- [4] H. Tokunaga and H. Yoshihara: Degree of irrationality of Abelian surfaces. J. Algebra, 174, 1111-1121 (1995).
- [5] H. Yoshihara: Degree of irrationality of an algebraic surface. J. Algebra, 167, 634-640 (1994).
- [6] H. Yoshihara: Quotients of Abelian surfaces.
 Publ. RIMS. Kyoto Univ., 31, 135-143 (1995).