∈

Spectra of the Laplacian with Small Robin Conditional Boundary

By Shin OZAWA

Department of Mathematics, Faculty of Sciences, Tokyo Institute of Technology (Communicated by Kiyosi ITÔ, M. J. A., March 12, 1996)

Let M be a bounded domain in R^4 with smooth boundary ∂M . Let \tilde{w} be a fixed point in M. Let B_{ε} be the ball of radius ε with the center \tilde{w} . We put $M_{\varepsilon} = M \setminus \overline{B}_{\varepsilon}$. Consider the following eigenvalue problem:

$$-\Delta u(x) = \lambda u(x) \qquad x \in M_{\varepsilon}$$
$$u(x) = 0 \qquad x \in \partial M$$
$$u(x) + k\varepsilon^{\sigma} \frac{\partial}{\partial \nu_{x}} u(x) = 0 \quad x \in \partial B_{\varepsilon}.$$

Here $\sigma \in [0, 1)$ and k denotes a positive constant. Here $\frac{\partial}{\partial \nu_x}$ denotes the derivative along the exterior normal direction with respect to M_{ε} . Let $\mu_j(\varepsilon)$ be the j th eigenvalue of the above problem.

Let μ_j be the *j* th eigenvalue of the problem:

$$-\Delta u(x) = \lambda u(x) \quad x \in M$$
$$u(x) = 0 \quad x \in \partial M.$$

Let $\varphi_j(x)$ be the L^2 normalized eigenfunction of $-\Delta$ associated with μ_j .

We have the following

Theorem 1. Fix $\sigma \in [0, 1)$. Fix j. Assume that μ_i is a simple eigenvalue. Then,

$$\mu_{j}(\varepsilon) - \mu_{j} = 2\pi^{2}k^{-1}\varepsilon^{3-\sigma}\varphi_{j}(\tilde{w})^{2} + O(\varepsilon^{4-2\sigma} + \varepsilon^{3-\sigma}(\varepsilon^{(1/2)+\theta} + \varepsilon^{\sigma+\theta}))$$

for some $\theta > 0$ as ε tends to zero.

The related topics are discussed in Ozawa [1], Roppongi [8], Ozawa-Roppongi [7]. See, for other related topics, Ozawa [2], [3], [4].

The main idea of our Theorem 1 lies in the use of an approximated iterated Green function, which were found in Ozawa [5], [6].

Let (w_1, \ldots, w_4) be an orthonormal basis of \boldsymbol{R}^4 . Then, we put

$$\langle \nabla_w f(x, \tilde{w}), \nabla_w g(\tilde{w}, y) \rangle = \sum_{j=1}^4 \frac{\partial}{\partial w_j} f(x, w) \frac{\partial}{\partial w_j}$$

 $g(w, y) \Big|_{w=\tilde{w}}$

Let G(x, y) be the Green function of $-\Delta$ in Munder the Dirichlet condition on ∂M . Let $G_{\varepsilon}(x, y)$ be the Green function of $-\Delta$ in M_{ε} under the Dirichlet condition on ∂M satisfying

$$G_{\varepsilon}(x, y) + k\varepsilon^{\sigma} \frac{\partial}{\partial \nu_{x}} G_{\varepsilon}(x, y) = 0 \quad x \in \partial B_{\varepsilon}.$$

Let $G_{\varepsilon}^{(2)}(x, y)$ be the iterated Green function of $-\Delta$ which is defined by

$$G_{\varepsilon}^{(2)}(x, y) = \int_{M_{\varepsilon}} G_{\varepsilon}(x, z) G_{\varepsilon}(z, y) dz$$

Let $G^{(2)}(x, y)$ be the iterated Green function which is defined by

$$G^{(2)}(x, y) = \int_{M} G(x, z) G(z, y) dz$$

We put

$$\begin{aligned} q_{\varepsilon}(x, y) &= G^{(2)}(x, y) + g(\varepsilon) \left(G^{(2)}(x, \tilde{w}) G(\tilde{w}, y) \right. \\ &+ G(x, \tilde{w}) G^{(2)}(\tilde{w}, y) \right) \\ &+ h(\varepsilon) \left(\left\langle \nabla_{w} G^{(2)}(x, \tilde{w}), \nabla_{w} G(\tilde{w}, y) \right\rangle \right. \\ &+ \left\langle \nabla_{w} G(x, \tilde{w}), \nabla_{w} G^{(2)}(\tilde{w}, y) \right\rangle \right), \end{aligned}$$

where

$$g(\varepsilon) = - \left((4\pi^2)^{-1} \varepsilon^{-2} + 2^{-1} k \pi^{-2} \varepsilon^{\sigma-3} \right)^{-1}$$

$$h(\varepsilon) = k \varepsilon^{\sigma} (2^{-1} \pi^{-2} \varepsilon^{-3} + (3/2) k \pi^{-2} \varepsilon^{\sigma-4})^{-1}$$

Let $\mathbf{G}_{\varepsilon}^2$, \mathbf{Q}_{ε} be the operators defined by

$$(\mathbf{G}_{\varepsilon}^{2}h)(x) = \int_{M_{\varepsilon}} G_{\varepsilon}^{(2)}(x, y) h(y) dy$$

and

$$(\boldsymbol{Q}_{\varepsilon}h)(x) = \int_{M_{\varepsilon}} q_{\varepsilon}(x, y) h(y) dy.$$

We have the following

Proposition 1. There exists a constant C independent of ε such that

$$\|\mathbf{G}_{\varepsilon}^{2} - \boldsymbol{Q}_{\varepsilon}\|_{\mathscr{L}^{(L^{2}(\boldsymbol{M}_{\varepsilon}), L^{2}(\boldsymbol{M}_{\varepsilon}))}} \leq C\varepsilon^{3-\sigma} |\log \varepsilon|^{1/2} (\varepsilon^{\sigma+\theta} + \varepsilon^{(1/2)+\theta})$$

for $\theta > 0$.

The above Proposition can be obtained by using the following

Lemma 1. Consider the equation

$$\begin{aligned} \Delta v_{\varepsilon}(x) &= 0 \quad x \in M \setminus \bar{B}_{\varepsilon} \\ v_{\varepsilon}(x) &= 0 \quad x \in \partial M \\ v_{\varepsilon}(x) &+ k \varepsilon^{\sigma} \frac{\partial}{\partial \nu_{x}} v_{\varepsilon}(x) = \alpha(\omega) \quad x = w + \varepsilon \omega \\ \partial B_{\varepsilon}. \end{aligned}$$

Here $\omega \in S^3 = \{x ; |x| = 1\}$. Then, v_{ε} satisfies $\|v_{\varepsilon}\|_{L^2(M_{\varepsilon})} \leq C\varepsilon^{3-\sigma} |\log \varepsilon|^{1/2} \|\alpha\|_{H^{(1/2)+\overline{\vartheta}}(S^3)}$

for $\tilde{\theta} > 0$, where $H^{(1/2)+\tilde{\theta}}(S^3)$ is the L^2 Sobolev space of fractional order. Here C is a constant independent of ε . We can take $\tilde{\theta}$ as close as 0.

We put

S. OZAWA

and

 $(\boldsymbol{P}_{\varepsilon}f)(x) = \int_{M^{\varepsilon}} p_{\varepsilon}(x, y) f(y) dy.$ Fix $f \in L^{2}(M_{\varepsilon})$. We have $(\boldsymbol{G}_{\varepsilon}^{2} - \boldsymbol{Q}_{\varepsilon}) f = v_{1} + v_{2}$, where $v_{1} = \boldsymbol{G}_{\varepsilon}(\boldsymbol{G}_{\varepsilon} - \boldsymbol{P}_{\varepsilon}) f$ and $v_{2} = (\boldsymbol{G}_{\varepsilon}\boldsymbol{P}_{\varepsilon} - \boldsymbol{Q}_{\varepsilon}) f$. We have the following identities.

$$\begin{aligned} \Delta v_1(x) &= (\boldsymbol{G}_{\varepsilon} - \boldsymbol{P}_{\varepsilon}) f(x) & x \in M_{\varepsilon} \\ v_1(x) &= 0 & x \in \partial M \\ v_1(x) &+ k \varepsilon^{\sigma} \frac{\partial}{\partial \nu_x} v_1(x) = 0 & x \in \partial B_{\varepsilon} \end{aligned}$$

and

$$\Delta v_2(x) = 0 \quad x \in M_{\varepsilon}$$

$$v_2(x) = 0 \quad x \in \partial M$$

Thus, if we estimate

$$v_2(x) + k\varepsilon^{\sigma} \frac{\partial}{\partial \nu_x} v_2(x)$$

on ∂B_{ε} , then v_2 can be estimated using Lemma 1.

We stated a rough story of our proof of Proposition 1. If Proposition 1 is proved, the rest part of our proof of Theorem 1 is a perturbation theory of eigenvalues.

Comment. The details of the present paper will appear elsewhere.

References

- [1] S. Ozawa: Singular variation of domain and spectra of the Laplacian with small Robin conditional boundary. I. Osaka J. Math., 29, 837-850 (1992).
- [2] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian. J. Fac. Sci. Univ. Tokyo., 30, 53-62 (1983).
- [3] S. Ozawa: Spectra of domains with small spherical Neumann boundary. J. Fac. Sci. Univ. Tokyo, 30, 259-277 (1983).
- [4] S. Ozawa: Singular variation of the ground state eigenvalue for a semilinear elliptic equation. Tôhoku Math. J., 45, 359-368 (1993).
- [5] S. Ozawa: Singular Hadamard's variation of domains and eigenvalues of the Laplacian. II. Proc. Japan Acad., 57A, 242-246 (1981).
- [6] S. Ozawa: An asymptotic formula for the eigenvalue of the Laplacian in a three dimensional domain with a small hole. J. Fac. Sci. Univ. Tokyo, Sect. IA, 30, 53-62 (1983).
- [7] S. Ozawa and S. Roppongi: Singular variation of domain and spectre of the Laplacian with small Robin conditional boundary. II. Kodai Math. J., 15, 403-429 (1992).
- [8] S. Roppongi: Asymptotic of eigenvalues of the Laplacian with small spherical Robin boundary. Osaka J. Math., 30, 783-811 (1993).