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Monopoles and Dipoles in Biharmonic Pseudo Process

By Kunio NISHIOKA

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kiyosi IT(5, M. J. A., March 12, 1996)

A denotes the differential operator Lapla-
cian square. It is called the biharmonic operator’
and plays an important role in the theory of elas-
ticity and fluid dynamics. Given an equation
() ,u(t, x) AU(t, x) xU(t, x),

t > O, x R,
we easily obtain its fundamental solution p(t, x)"

(2) p(t x):
1 f_:dexp{_ ix ’t}
t>0, xR1.

Following the pioneer works of Krylov [2] and
Hochberg [1], we consider ’particles’ whose ’tran-
sition probability density’ is taken to be p(t, x)
though p(t,x)is not positive. We call these
’particles’ biharmonic pseudo process (or BPP in

short). In this note, we shall calculate a ’distribu-

tion’ of the first hitting time of BPP, and it will
be proved that BPP observed at a fixed point be-
haves as a mixture of particles of two different
types, which are onopoles’ and ’dipoles’

1. Given positive t and s,p(t,x) is an
even function in x belonging to the Schwartz

;"class , p(t, x) t-/4p(1, x dx p(t, x)

d p(t, x)p(s, p(t + s, x).

Here, note that values of p(t, x) may be negative.

In fact, Hochberg [1] proved that
p(1 [X[) a[xl-1/aexp( b[x

x cos c[x[4/a W a lower order term
for large Ix I, where a, b, and c are positive con-

stants. From the above, we see that

(3)

a constant p 1.
Basing on this p(t, x), we can build up a finitely
additive signed measure x on cylinder sets in

R [0’)R’) A cylinder set in say F, is a set such
that
(4) F {wR’) w(t) B,..., w(t.) B,}
where 0 t < < t, and B,’s are Borel sets
in R. For each cylinder set as in (4), we define a
finitely additive signed measure x by

(5) ix[/-] =-- _]_ dyl"" _] dynP(tl, Yl x) x

p(t. t, y y) p(t, tn_i, Yn Yn-1)"
Fix 0 -- tl < < tn, and iBx is a a-additive fi-
nite measure on a Borel field on Rn

with total
variation pn. We say that a function f defined on
Rl’) is tame, if

(6) f(w) g(co(t),..., oo(t.)), RI’=)

for a Borel function g on R" with 0 <-- t <
< tn. For each tame function f as in (6), we de-
fine its expectation in the ordinary way;

(7) =[f(co)] ff(oo) Px[dco(tl) x dco(tn)]

if the right hand side exists.
/5 x satisfies the consistency condition, but

(3) disturbs validity of Kolmogorov’s extension

theorem. So we do not know exactly an existence
of a a-additive extension of (5) into a function
space. But we easily see that total variation of
such a-additive extension must be infinite if it
may exist.

2, We extend an expectation given by (7).
Let n and N be natural numbers. For each co
R t’’.), we set

co, (t) 2"
and t < N

( if t 2 N.
N

This approximating function wn s a step func-
tion in Skorokhod space D[0, ), which is a space
of all right continuous functions on [0, ) with

left hand limits.
Definition 1. We say that a function F on

R’=)
is admissible if F satisfies the following;

(a) for each n and N, F(w) is tame,

(b) for each
F(w),

(c) there exists fimn_=lu_= N=a I=[F(w)]
I.

For each admissible function F, we define its ex-
pectation by
(8) Ex[F(w)] lim lim x[F(w)].
If exists, this expectation is unique owing to (c)
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of Definition 1. When a defining function
IA(CO) is admissible for a subset A c Rt’), we
denote Ez[IA (co) Px[A].

We denote by Ha[0, oo)a set of all func-
tions on [0, oo) which satisfy HOlder’s condition
of order c. In [2], Krylov proved that

1
Total variation of Px[Ha[O,oo) c] 0 if c < -.
This tells us that mass of ex is concentrated in
continuous functions. However for a technical
reason, we take a larger Skorokhod space D[0, oo)
as a path space of the pseudo process correspond-
ing to ex. From now on, we confuse those ex and
Ex with their respective restrictions on D[0, oo).

Definition 2. A biharmonic pseudo process, or
BPP in short, is a family of finitely additive
signed measures {ez’x R1} which is defined
on subsets in D[0, oo) whose defining functions
are admissible.

Remark 3. The domain of ex is a finitely
additive field in D[0, c) which strictly includes
all cylinder sets in D[0, c).

3. Given co D[0, c), we put
v0(co) inf{t > 0 co(t) < 0},

which is called the first hitting time to a set
(-- oo, 0). Following to (8), we shall calculate an
expectation of a function

(9) exp {-- 2 v0 (w) + iW(Vo)
for each 2 > 0 and R1. Although our Ex in

(8) is not an integral by a usual probability mea-
sure, we can calculate the expectation of (9) by
Spitzer’s identity [4], which has been proved by a
combinatorial method.

Proposition 4. Let x >-- O, 2 > O, and
R1. Then a function (9) is admissible, and we have
(10) E[exp{-- 2v0(w) + iW(Vo)}]

1 1/4 1/4

/ [01exp{2 02x} +01exp{2 02x}]
i 1/4 1/4-- V/--/l/4

[- exp {/ 02x} + exp {/ 02x} ],

where 01 =- exp{ri/4} and 02 =- exp{3ri/4}.
Remark 5. Hochberg [1] already computed

an expectation of exp{--/v0(co)} in two ways,
and obtained different results each other. His

first method is based on Spitzer’s identity, and
the other is on Andre’s reflection principle. As a

matter of fact, Andre’s reflection principle does
not work for BPP (see Remark 16). So his
second result is not right, but his first result
coincides with (10) in case fl 0.

4. In the case of usual probability theory,
we can derive a joint distribution
(11) Px[v0(co) dt, 00(%) da]
from its characteristic function (10), by Boch-
net’s theorem. But the theorem is not valid in the
case of BPP, and we need another way to obtain

(11). Given functions and p in the Schwartz
class a3, we prove that a function.

exp{-- /Vo (co) } (o (co)) P (co (o))
is admissible and its expectation is a continuous

bilinear functional on the space s a3. Then we

obtain a Schwartz’s tempered distribution q(x ;t,
a) such that
(12) E.[exp{-- 2Vo(co)}(Vo(co))rp(co(Vo))]

dt da e
-t q(x t, a) (t) q(a)

for any and p in . In the usual probability
theory, distributions of real-valued random vari-

ables are non-negative continuous linear func-
tionals on the function space C. While (12) sug-
gests us that a ’distribution’ in BPP should be
understood as a continuous linear functional on

some function space which includes at least.
Definition 6. We call the above Schwartz’s

tempered distribution q(x t, a) a density of the
’distribution’ (1 1), and define

Px[vo(co) dr, co(Vo) da] =- q(x; t, a) dt da.
Theorem 7. Let x >_ O. Then

(13) Px[vo(W) dr, W(Vo) da] [K(t,x)6(a)
](t, x) 6" (a) dt da

where ((a) is Dirac’s delta function with its deriva-

tive (’(a) in the sense of Schwartz’s distribution

and
1

db exp{-- b4t}4b3(sin bxK(t, x) =-
cos bx + exp {- bx}),

](t, x) db exp {- b4t}4b(sin bx

cos bx + exp {- bx} ).
Now we can extend (13) into a continuous

bilinear functional on a wider space, owing to its

explicit form:
Corollary 8. (13) is extended into a con-

tinuous bilinear functional on Bb[0 o) C1,
where Bb[0, oo)is a space of all bounded Borel

functions on [0, oo) and C is a space of all con-

tinuously differentiable functions on R1.
Remark 9. (i) The derivative of Dirac’s de-

lta function, --6’(a), is called a dipole in phy-
sics, that is a particle carrying equal magnitude
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and opposite sign charges.
(ii) In the case of Brownian motion {B(t), t 0},
it is well known that

2x exp(-- x /2t}Px [Vo dt, B (Vo) da]
2rot

6(a) dtda; x>O,
where 6(a) da is 6-measure with a point mass at
{0}. Comparing this with (13), we know that
BPP behaves as if it is composed from particles
of two kinds when we observe it at a fixed point.
A particle of the first kind, which we call a mono-
pole, carries charge of. a single sign similar to a

Brownian particle. The second is just the same as
a dipole in physics and we also call it a dipole.
Since total variation of Px is not bounded, dipole
exists in case of BPP. While Brownian motion

has no dipole since Wiener measure has finite
total variation.

Now, by this remark, we come to have an in-

tuitive explanation of Theorem 7.
Definition 10. We define two different ’dis-

tributions’ in BPP:
Px[vo(co) dt, co(Vo) da, co(Vo) is monopole]

K(t, x) 6(a) dt da
Px[vo(co) dt, cO(Vo) da, co(Vo) is dipole]

](t, x) (-- 6’(a)) dt da,
where the former is a continuous linear function-
al on B0[0, oo) C and the latter on Bb[0,
C.
Corollary 11. In the sense of continuous

linear functionals on Bb[0, oo) C l,
P[vo(W) dt, oO(Vo) da]

Px[z-o(co) e dt, w(z-o) da, co(z-o) is monopole]
+ Px[z-o(co) dt, co(z-o) da, co(z-o) is dipole].
Let a monopole start from {x}. Using Corollary
11, we have

db 6(b- x)[Po[z-o(W) dt, w(z-o) da,

co(z-o) is monopole]
+ P0[z-o(co) dt, w(z-o) da, co(z-o) is dipole]]

[K(t, x) 6(a) + ](t, x) (- 6"(a))] dt da,
P[z-o(co) dr, w(z-o) da].

On the other hand if a dipole starts from {x},
then we have

(14) f db (-- 6"(b x)) [Po[z-o(co) dt, w(z-o)

da, w(z-o) is monopole]
+ P0[z-o(W) e dt, w(z-o) da, w(z-o) is dipole]]

-]OK O/ O"t- (t, x) 6(a) + - (t, x) (- (a))] dtda

Here (14) tells us that not only a monopole but
also a dipole produces both monopoles and
dipoles.

Whenever we consider both effect of mono-
poles and dipoles, BPP fulfills a strong Markov
property with respect to the first hitting time:

Corollary 12. Let y< 0 x. Then in the
sense of continuous linear functionals on Bb[0, c),
it holds that

Px[co(t) dy] [Px[z-o(co) ds,
$---0

w(z-o) da, w(z-o) is monopole]
+ Pz[z-o(co) ds, co(z-o) da, w(z-o) is dipole]

P[w(t- s) dy]

Px[z-o(W) ds, w(vo) da]
0

Pa[co(t- s) dy].
In other words, we have a chain rule: For y < 0
< x and each continuously differentiable func-
tion f

f;. f Px[z-o(co) dt, co(z-o) da]

8. We let monopoles and dipoles to be
absorbed when they hit the point (0). Using re-
sults in 2 and 4, we construct a new ’distribu-

(P[co(t) "]’x

_
0), in the followingtion’

way:
(a) A monopole starts from x >-- 0, and

moves in the same law as BPP until it
its (-- oo, 0).

(b) If BPP hits (--o, 0), it is absorbed
either when co(z"0) is a monopole or a

dipole.
We put

U(x, , fl) d P[w(t) db]

exp {- 2t + iflb}
From the definition of Px[co(t) "], we have

(15)

Px[co(t) db]

dt J=o J=-= J exp {- 2t + iflb}

(Px[z-o(co) ds, co(z-o) da, co(z-o) is monopole]
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+ Px[ro(co) ds, o0(%) da, W(ro) is dipole])
P [oo (t s) db].

Now after easy calculation, we obtain an explicit
form of

yo(16) dt P[w(t) db] exp{-/t} (t) q(b),

for each b and q in x3, and it follows that (16) is
a continuous bilinear functional on x3 x . So, as
in 4, we obtain a ’distribution’ P[og(t) db]
as a Schwartz’s tempered distribution, which can

be extended as follows.
Theorem 13. For x, b O,

(17) P[(t) db] -p(t, b--x) db--

P[ro ds, W(ro) da] p(s, b- a) db,
-0

which is a continuous linear functnal on B[O, ).
Remark 14. (i) By Corollary 12, we see

that

p(t, b- z) P[zo ds, W(ro) da]
-0

p(s, b-- a) 0, if b < 0.
Remember that P[w(O db] p(t, b- w)db,
and we may assume that b 0 in the theorem.
(ii) We can consider P2[w(t) db] as a finitely
additive signed measure on cylinder sets in D[0,
) in the same way as in (5).

As we expect from the case of Brownian mo-

tion with an absorbing barrier boundary condi-

tion, the ’distribution’ P[w(t) db] corres-
ponds to (1) with Dirichlet boundary condition.
In fact for a bounded smooth function f on [0, ),
we put

(18) v(t, x) P2[w(t) db] f(b).

Corollary 15. This v satisfies
(19) Otv A v, t > O,z > 0; v(0 +,z) f(z)
and Dirichlet boundary condition

v(t, O 0 v(t, 0, t > 0.
Remark 16. (i) Since BPP observed at a

fixed point is composed from monopoles and
dipoles, we need two boundary conditions in
order to control them respectively. The boundary
condition, v(t, 0)= 0, means to absorb mono-
poles, while Oxv(t, 0) --0 does to absorb
dipoles.

(ii) Owing to Andre’s reflection principle, we

easily obtain the transition probability of Brow-
nian motion with an absorbing barrier boundary
condition. But, by an effect of dipoles, the princi-
ple does not work for BPP.

As boundary conditions for BPP, we may
set one of ’absorbing’, ’sticking’, and various ’re-
fleeting’ barrier conditions on each kind of parti-
cles respectively. Thus their combinations derive

various boundary conditions to (19). For inst-

ance, when we set ’usual’ reflecting barrier con-
dition for monopoles and absorbing barrier con-
dition for dipoles, we get a pseudo process cor-

responding to (19) with Neumann boundary con-

dition:
av(t, O) 0 Ov(t, 0), t > 0.

We shall discuss the details of these results else-
where.
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