Heegner Points on Modular Elliptic Curves

By Hajime NAKAZATO

Department of Mathematics, Tokyo National College of Technology (Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1996)

Abstract: We consider an elliptic curve E with a modular parametrization $\varphi: X_0(N) \rightarrow E$. Under some conditions the images of Heegner points on $X_0(N)$ by φ are of infinite order.

1. Introduction. Let E be a modular elliptic curve of conductor N defined over Q with a parametrization $\varphi: X_0(N) \to E$ mapping the cusp ∞ of $X_0(N)$ to the origin of E which we consider as given in the following. Let E_n be the group of n-division points of E for an integer n.

If E has no complex multiplication over C, then Serre [11] has shown that

 $\operatorname{Gal}(\boldsymbol{Q}(\boldsymbol{E}_{\ell})/\boldsymbol{Q}) \simeq \operatorname{Aut}_{\boldsymbol{F}_{\ell}}(\boldsymbol{E}_{\ell}) \simeq \operatorname{GL}(2, \boldsymbol{F}_{\ell})$ for almost all primes ℓ (i.e., for all but a finite number of primes).

Definition. (a) If E has no complex multiplication, we define a finite set S_E of rational primes by

$$S_E := \{\ell; \operatorname{Gal}(\boldsymbol{Q}(E_\ell)/\boldsymbol{Q}) \not\simeq \operatorname{Aut}_{F_\ell}(E_\ell) \} \cup \{\ell: \ell \mid N\} \cup \{2, 3\}.$$

(b) If E has complex multiplication, we define a finite set S_E of rational primes by

 $S_{E} := \{\ell; \ell \mid N\} \cup \{2,3\}.$

Remark. For a semi-stable (modular) elliptic curve E without complex multiplication, we can use [11, Corollaire 1,p.308] to determine the set S_E .

Definition. Let K be an imaginary quadratic field of discriminant -D which satisfies the following two conditions:

(1) Each prime factor ℓ of D is not contained in S_{E} .

(2) Each prime factor ℓ of N splits in K.

There are infinitely many imaginary quadratic fields K which satisfy these two conditions and whose class number h_K is greater than the degree deg(φ). From the second condition, there is an ideal n of the integer ring \mathcal{O}_K of K satisfying $\mathcal{O}_K/\mathfrak{n} \simeq \mathbb{Z}/N\mathbb{Z}$.

From now on we fix an imaginary quadratic field K with discriminant -D which satisfies these two conditions.

Let [a] be the ideal class of K which

contains an ideal a. Let $x_1 = (\mathcal{O}_K, \mathfrak{n}, [\mathfrak{a}])$ be the complex point $(C/\mathfrak{a}, C/\mathfrak{a}\mathfrak{n}^{-1})$ of $X_0(N)$ [2], [4]. Let K_1 be the Hilbert class field of K. Then the theory of complex multiplication implies that the point x_1 is rational over K_1 . Following [4], x_1 is called a Heegner point on $X_0(N)$ and its image $y_1 = \varphi(x_1)$ in $E(K_1)$ is called a Heegner point on E.

The following is our result with respect to y_1 .

Theorem 1.1. If $h_K > \deg(\varphi)$, then the Heegner point y_1 has infinite order.

Kurčanov [9, Proposition, p.323] has proved that Heegner points have infinite orders in the case that D is a prime. Our theorem generalizes Kurčanov's Proposition.

Let y_K be $\operatorname{Tr}_{K_1/K}(y_1)$ contained in E(K), where the sum is taken with respect to the group law on E. Gross and Zagier [3] have proved that if y_K has infinite order, then $L'(E/K, 1) \neq 0$. Kolyvagin [5], [6], [7], [8] has proved that if y_K has infinite order, then the Mordell-Weil group E(K) has rank one and the Tate-Shafarevich group $\coprod(E/K)$ is finite.

The following is our result with respect to y_{K} .

Theorem 1.2. If y_K is a torsion point, then $y_K \in E(Q)$.

We denote by z^{ρ} the complex conjugate of a point z in E(C).

Corollary 1.3. If $y_K^{\rho} \neq y_K$, then y_K has infinite order.

2. Proof of theorems. The following lemma is known to specialists.

Lemma 2.1. $K(x_1) = K_1$.

Proof. For an ideal \mathfrak{a} of \mathcal{O}_K [12, Theorem 5.7 (iv)] asserts $K(j(\mathfrak{a})) = K_1$. Since the function field of $X_0(N)$ over Q is Q(j(z), j(Nz)) [12, p.157]. From [4,I.2], if $\mathfrak{a} \simeq Z\tau + Z1$, $\operatorname{Im}(\tau) > 0$,

 $\mathfrak{a}\mathfrak{n}^{-1} \simeq \mathbf{Z}\tau + \mathbf{Z}(1/N) \simeq \mathbf{Z}N\tau + \mathbf{Z}1.$

Hence the coordinates $j(\mathfrak{a}) = j(\tau)$ and $j(\mathfrak{an}^{-1}) = j(N\tau)$ of x_1 generate K_1 over K.

Lemma 2.2. If $h_K > \deg(\varphi)$, then $y_1 \notin E(K)$.

Proof. If $y_1 \in E(K)$, then $y_1^{\sigma} = y_1$ for all $\sigma \in \text{Gal}(K_1/K)$. Since φ is defined over Q and $y_1 = \varphi(x_1)$, we have for each $\sigma \in \text{Gal}(K_1/K)$

 $\varphi(x_1^{\sigma}) = (\varphi(x_1))^{\sigma} = y_1^{\sigma} = y_1.$ Thus $x_1^{\sigma} \in \varphi^{-1}(y_1)$ for each $\sigma \in \text{Gal}(K_1/K)$, hence

 $\{x_1^{\sigma}; \sigma \in \operatorname{Gal}(K_1/K)\} \subseteq \varphi^{-1}(y_1).$

Because of Lemma 2.1 x_1^{σ} ($\sigma \in \text{Gal}(K_1/K)$) are mutually distinct. Hence we have

$$h_{K} = | \{ x_{1}^{\sigma} ; \sigma \in \operatorname{Gal}(K_{1}/K) \} |$$

$$\leq | \varphi^{-1}(y_{1}) | \leq \operatorname{deg}(\varphi).$$

This contradicts with the assumption. \Box

Note. Assume that E has complex multiplication. Let \mathcal{O} be $\operatorname{End}_{\overline{Q}}(E)$, then $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}$ is an imaginary quadratic field k with discriminant d_k and \mathcal{O} is an order of k. Shimura [13] has shown that d_k divides the level N and $\operatorname{End}_{\overline{Q}}(E) = \operatorname{End}_k(E)$. As E is defined over \mathbb{Q} , the class number of \mathcal{O} is one. There are thirteen orders with class number one whose conductors are one, two or three [11, Example, p.295]. Let \mathcal{O}_k be the maximal order of k, then $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} = \mathcal{O}_k \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}$ for each prime $\ell > 3$.

Lemma 2.3. Assume that each prime factor of D is not contained in S_E , then

 $E_{tors}(K_1) = E_{tors}(Q).$

Proof. Let $y \in E_{tors}(K_1)$. Suppose that y has a finite order m.

Let us consider the case;

(i) where there is a prime factor ℓ of m such that $\ell \notin S_E$.

Let z be $(m/\ell)y$ in $E(K_1)$, then z is a point of order ℓ .

(a) Assume that E has no complex multiplication.

Since $\ell \notin S_E$, we have $\operatorname{Gal}(Q(E_{\ell})/Q) \simeq \operatorname{Aut}_{F_{\ell}}(E_{\ell})$, which is transitive on all points of order ℓ . Thus $\{z^{\sigma}; \sigma \in \operatorname{Gal}(Q(E_{\ell})/Q)\}$ generates E_{ℓ} as module.

For $\sigma \in \text{Gal}(Q(E_{\ell})/Q)$, we extend σ to an automorphism of the algebraic closure of Q in C denoted by the same σ . Since the extension K_1/Q is normal, we have $K_1^{\sigma} = K_1$. Hence $z^{\sigma} \in (E(K_1))^{\sigma} = E(K_1^{\sigma}) = E(K_1)$. Thus we have $E_{\ell} \subseteq E(K_1)$.

(b) Assume that E has complex multiplication by \mathcal{O} as in Note.

We use the notations in Note. It is known that $E_{\ell} = \mathcal{O}z + \mathcal{O}z^{\rho}$. Since $\mathcal{O}z \subseteq E(kK_1)$ and $E_{\ell}^{\rho} = E_{\ell}$, we have

$$\mathcal{O}z^{\rho} = (\mathcal{O}z)^{\rho} \subseteq (E(kK_1))^{\rho} = E((kK_1)^{\rho})$$
$$= E(kK_1).$$

Therefore we have $E_{\ell} = \mathcal{O}z + \mathcal{O}z^{\rho} \subseteq E(kK_1)$.

Summing up all cases, we have $E_{\ell} \subseteq E(K_1)$ or $E_{\ell} \subseteq E(kK_1)$. Using the nondegeneracy of the Weil-pairing on E_{ℓ} , we have $\zeta_{\ell} = \exp(2\pi i/\ell) \in K_1$ or kK_1 . Hence $Q(\zeta_{\ell}) \subseteq K_1$ or kK_1 . Since d_k devides N and $\ell \notin S_E$, the ramification index of ℓ in K_1 or in kK_1 is one or two. However the ramification index of ℓ in $Q(\zeta_{\ell})$ is $\ell - 1 \ge 4$. This is a contradiction.

The other is the case;

(ii) where each prime factor ℓ of m is contained in S_E .

We include the case of m = 1. Let L be $Q(E_m)$. Since $\operatorname{ord}(y) = m, y \in E_m$ thus $y \in E(L)$.

We claim that $L \cap K_1 = Q$. In fact any ramified prime ℓ in K_1/Q divides D, which is not contained in S_E . Any ramified prime ℓ in L/Q divides N or m, which is contained in S_E . Hence $L \cap K_1$ is unramified over Q.

As $y \in E(K_1) \cap E(L)$, we have $y \in E(Q)$.

Proof of Theorem 1.1. Lemma 2.2 and Lemma 2.3 imply Theorem 1.1.

Proof of Theorem 1.2. Since $y_K \in E(K)$, Lemma 2.3 implies Theorem 1.2.

Remark 2.4. Let K_f be the ring class field with a conductor f. If each prime factor of f is not contained in S_E , then we have theorems for K_f instead of K_1 by a suitable reformulation.

3. Applications and remark. Let $-\varepsilon = \pm 1$ denote the sign in the functional equation for L-function L(E/Q, s). Let [0] be the 0-cusp of $X_0(N)$. In [1] Birch has proved the following:

Lemma 3.1.

 $y_{K}^{\rho} = \varepsilon y_{K} + h_{K} \varphi([0]).$ Corollary 3.2. If $\varepsilon = -1$, then $y_{K}^{\rho} \neq y_{K} \Leftrightarrow y_{K}$ has infinite order.

Proof. \Rightarrow follows from Corollary 1.3.

Drinfeld-Manin's theorem asserts that the image of [0], in the jacobian variety, is a torsin point. If $y_{K}^{\rho} = y_{K}$, then we have

$$2y_{\kappa} = h_{\kappa}\varphi([0])$$

224

Hence y_{κ} is a torsin point.

Corollary 3.3. If $\varepsilon = 1$, then $h_K \varphi([0]) = 0$ and $y_K^{\rho} = y_K$.

Proof. Assume that $y_K^{\rho} \neq y_K$. Let $E(K)^- = \{z \in E(K) ; z^{\rho} = -z\}$. Corollary 1.3 implies that y_K has infinite order. In the case of $\varepsilon = 1$, Kolyvagin [5], [6], [7], [8] has proved that rank $(E(K)^-) = 0$ and rank(E(Q)) = 1.

However the point $y_K - y_K^{\rho}$ is contained in $E(K)^-$ and it has infinite order. Thus we have $y_K^{\rho} = y_K$.

Remark 3.4. In the case where E has no complex multiplication we can use the galois group structure in the proof of Lemma 2.3.

References

- B. J. Birch: Heegner points of elliptic curves. Symposia Math., no.15, pp.441-445 (1975).
- B. J. Birch and N. M. Stephens: Computation of heegner points. Modular Forms (ed. R. A. Rankin). Chichester, Ellis Horwood, pp.13-41 (1984).
- [3] B. H. Gross and D. Zagier: Heegner points and derivatives of *L*-series. Invent. Math., 84, 225-320 (1986).
- B. H. Gross: Heegner points on X₀(N). Modular Forms (ed. R. A. Rankin). Chichester, Ellis Horwood, pp.87-106 (1984).
- [5] B. H. Gross: Kolyvagin's work on modular elliptic curves. L-functions and Arithmetic (eds. J. Coates and M. J. Taylor). Proc. Duoham 1989, London Math. Soc. Lecture Note Ser., vol. 153,

Cambridge Univ. Press, London and New York (1991).

- [6] V. A. Kolyvagin: Finiteness of *E(Q)* and III(*E*, *Q*) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser, Mat., 52, 522-540 (1988): English transl., Math. USSR-Izv., 32, 523-542 (1989).
- [7] V. A. Kolyvagin: On the Mordell-Weil group and the Shafarevich-Tate group of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat., 52, 1154-1180 (1988); English transl., Math. USSR-Izv. 33, 473-499 (1989).
- [8] V. A. Kolyragin: Euler systems. The Grothendieck Festschrift. vol. II (A collection of articles written in honor of the 60th Birthday of Alexander Grothendieck), Birkhäuser, Basel, pp. 435 – 483 (1991).
- [9] P. F. Kurčanov: Elliptic curves of infinite rank over *Γ*-extensions. Mat. Sbornik, 90, (132), no.2 (1973): English transl., Math. USSR Sbornik, vol.19, no.2, pp.320-324 (1973).
- [10] J. P. Serre: Complex multiplication. Algebraic Number Theory (eds. J.W.S. Cassels and A. Fröhlich). Academic Press (1967).
- [11] J. P. Serre: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent, Math., 15, 259-331 (1972).
- [12] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton Univ. Press, Princeton (1971).
- G. Shimura: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math., J., 43, 199-208 (1971).