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Heegner Points on Modular Elliptic Curves
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Department of Mathematics, Tokyo National College of Technology

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1996)

Abstract: We consider an elliptic curve E with a modular parametrization (p :X0(N)--
E. Under some conditions the images of Heegner points on Xo(N) by (p are of infinite order.

1. Introduction. Let E be a modular ellip- contains an ideal a. Let xl (, n, [a]) be the
tic curve of conductor N defined over Q with a complex point (C/a, C/an-1

of Xo(N) [2], [4].
parametrization (p:X0(N) E mapping the Let K be the Hilbert class field of K. Then the
cusp oo of Xo(N) to the origin of E which we theory of complex multiplication implies that the
consider as given in the following. Let En be the point x is rational over K. Following [4], Xl is
group of n-division points of E for an integer n. called a Heegner point on Xo(N) and its image

If E has no complex multiplication over C, y q(x) in E(KI) is called a Heegner point on
then Serre[11] has shown that E.

Gal(Q(Ee)/Q) - AutF,(Ee) - GL(2, Fe) The following is our result with respect to
for almost all primes (i.e., for all but a finite
number of primes). Theorem 1.1. If h > deg(p), then the

Definition. (a) If E has no complex multi- Heegnerpoint y has infinite order.
plication, we define a finite set Sz of rational
primes by

Sz := {; Gal(Q(Ee)/Q) Aut,(Ee)}
{; IN) {2,3).

(b) If E has complex multiplication, we define a
finite set Sz of rational primes by

Sz (; IN ) (2,3}.

Kureanov [9, Proposition, p.323] has proved
that Heegner points have infinite orders in the
case that D is a prime. Our theorem generalizes
Kureanov’s PropositiOn.

Let YK be TrK1/ (Yl)contained in E (K),
where the sum is taken with respect to the group
law on E. Gross and Zagier [3] have proved that

Remark. For a semi-stable (modular) ellip- if y has infinite order, then L’(E/K, 1) =/: 0.
tic curve E without complex multiplication, we Kolyvagin [5], [6], [7], [8] has proved that if y
can use [11, Corollaire 1,p.308] to determine the has infinite order, then the Mordell-Weil group
set Sz. E(K) has rank one and the Tate-Shafarevich

Definition. Let K be an imaginary quadra- group I.[.I(E/K) is finite.
tic field of discriminant --D which satisfies the
following two conditions:

(1) Each prime factor of D is not contained
in Sz.

(2) Each prime factor of N splits in K.

The following is our result with respect to

Y.
Theorem 1.2. If Y2 is a torsion point, then

yK E(Q).
We denote by z" the complex conjugate of a

There are infinitely many imaginary quadra- point z in E(C).
tic fields K which satisfy these two conditions Corollary 1.3. If y =/= y, then y has infi-
and whose class number h is greater than the nite order.
degree deg(p). From the second condition, there 2. Proof of theorems. The following lemma
is an ideal n of the integer ring of K satis- is known to specialists.
fying K/n - Z/NZ. Lemma 2.1. K(x) K.

From now on we fix an imaginary quadratic Proof For an ideal a of OK [12, Theorem
field K with discriminant --D which satisfies 5.7 (iv)] asserts K(j(a)) K,. Since the function
hese two conditions, field of Xo(N) over Q is Q(j(z), j(Nz)) [12,

Let [a] be the ideal class of K which p.157]. From [4,I.2], if a Zv + Z1, Im(v) > 0,
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then we have
-1

n "" Zr + Z(1/N) ZNr + Z1.
Hence the coordinates j(c) j(r) and j(art-1)
j(Nv) of x generate K1 over K. [--I

Lemma 2.2. If hK > deg(q)), then Yl @
E(K).

Proof If Yl E(K), then Yl Yl for all
a Gal(KI/K). Since q is defined over Q and

Yl QO(Xl), we have for each a GaI(K1/K)
(x;’) yl yl.

r --1
Thus x (p (y) for each a Gal(K1/K),
hence

-1(x’; a Gal(K/K)} - q (y).
Because of Lemma 2.1 x (a Gal(K1/K)) are
mutually distinct. Hence we have

hK- I{xi ;a Gal(K1/K)}I
-1<_[q (y)[ N deg(qo).

This contradicts with the assumption. [-1
Note. Assume that E has complex.multi-

plication. Let be End(E), then @z Q is an
imaginary quadratic field k with discriminant dk

and is an order of k. Shimura [13] has shown
that d divides the level N and End(E)=
End(E). As E is defined over Q, the class num-
ber of is one. There are thirteen orders with
class number one whose conductors are one, two
or three [11, Example, p.295]. Let be the max-
imal order of k, then @zZe= @zZe for
each prime > 3.

Lemma 2.3. Assume that each prime factor of
D is not contained in Sz, then

Etors (KI) Etors (Q)
Proof Let y Etors(K1). Suppose that y

has a finite order m.
Let us consider the case;

(i) where there is a prime factor # of m such that

Let z be (m/g)y in E(K1), then z is a point
of order g.
(a) Assume that E has no complex multiplication.

Since gSE, we have Gal(Q(E)/Q)"
AutF(Ee), which is transitive on all points of
order g. Thus {z;a Gal(Q(E)/Q)} gener-
ates Ee as module.

For a GaI(Q(E)/Q), we extend a to an
automorphism of the algebraic closure of Q in C
denoted by the same a. Since the extension K1/Q
is normal, we have K: K1. Hence z
(E(K))= E(K)= E(K1). Thus we have E_
E(K).

(b) Assume that E has complex multiplication by
ff as in Note.

We use the notations in Note. It is known
that Ee z + z. Since z - E(kK1) and E
E, we have
z= (z)

_
(E(kK)) E((kK1))
E (kK1).

Therefore we have Ee ?z + z - E(kK1).
Summing up all cases, we have Ee

E(Ka) or Ee
_

E(kKI). Using the nond’egeneracy
of the Weft-pairing on Ee, we have
exp(27ri/g) K1 or kK1. Hence Q(e) --- K or

kK. Since d derides N and g SF., the rami-
fication index of g in K or in kK is one or two.
However the ramification index of g in Q(e) is
g- 1 2 4. This is a contradiction.

The other is the case;
(ii) where each prime factor g of m is contained
in Sz.

We include the case of m= 1. Let L be
Q(Em). Since ord(y) m, y Em thus y
E(L)

We claim that L N K Q. In fact any

ramified prime g in K1/Q divides D, which is
not contained in SF.. Any ramified prime g in
L/Q divides N or m, which is contained in
Hence L 71 K is unramified over Q.

As y E(K) N E(L), we have y E(Q).

Proof of Theorem 1.1. Lemma 2.2 and Lem-
ma 2.3 imply Theorem 1.1. [-]

Proof of Theorem 1.2 Since y/ E(K),
Lemma 2.3 implies Theorem 1.2.

Remark 2.4. Let K: be the ring class field
with a conductor f If each prime factor of f is
not contained in Sz, then we have theorems for

K: instead of K by a suitable reformulation.
3. Applications and remark. Let --s

---+ I denote the sign in the functional equation
for L-function L(E/Q, s). Let [0] be the 0-cusp
of Xo(N). In [1] Birch has proved the following:

Lemma 3.1.
P

YI sy + hq ([0]).
Corollary 3.2. If s 1, then

O
YI 4: y <:V yK has infinite order.

Proof =:> follows from Corollary 1.3.
Drinfeld-Manin’s theorem asserts that the

image of [01, in the jacobian variety, is a torsin
point. If y: YK, then we have

2y h/(p ([0]).
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Hence Y,r is a torsin point. [--]
Corollary 3.3. Ire-- 1, then hK(p ( [O] 0

and y yK.

Proof. Assume that y yg. Let E(K)--
(z E(K) z --z}. Corollary 1.3 implies
that y has infinte order. In the case of e- 1,
Kolyvagin [5], [6], [7], [8] has proved that
rank(E(K)-) 0 and rank(E(Q)) 1.

However the point y--y is contained in
E(K)- and it has infinite order. Thus we have

=Yw F-1
Remark 3.4. In the case where E has no

complex multiplication we can use the galois
group structure in the proof of Lemma 2.3.
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