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1. Introduction and results. The purpose
of the present paper is to study the best constant
in the imbedding theorems for the weighted
Sobolev spaces with weight functions being pow-
ers of [xl. We shall deal with the weighted
Sobolev spaces denoted by W,’(Rn) and

1,p r),R,,,,(R where p, n, a fl satisfy n _> 2, 1 < p
< n/(1 cr-+-fl) and ,fl > n/p (See also
(1.5)). Let L(Rn) denote the space of Lebesgue
measurable functions, defined on Rn, for which

(1 1) u" L(R) u I x dx

W,(R") is defined as the completion of C
with respect to the norm

where q q(p, , fl, n) is the so-called Sobolev
exponent defined by

(1.3) q q(p, a, fl, n)
np

n p(1 a + fl)"
Here we note that q satisfies the equality in (1.5),
and if a fl then q equals np/(n--p),

1,PRa,E(R is defined as

(1.4) R,,z(R) {u W2,(Rn) u is a radial
function}.

We shall study the following variational
problems. Assume that p, q, n, a and fl satisfy

nk2,
(1.5)

0 < 1/p- 1/q (1-a + )/n
and
(1.6) n/q < fl a.
Under these assumptions (1.5) and (1.6), we set

(P) S(p, q, , ) inf gllz dz

In the following problem (PR), we assume instead
of the inequality (1.6)
(1.7) n/q < fl.

*) Dedicated

Seventieth Birthday.

to Professor S. Mizohata on his

Under the assumptions (1.5) and (1.7), we set
(P)

SR(P, q, or, fl, n) inf[; 117u I’ Ixl’ dx;

u R.’’(R I[u;L(R [1= 1

By a suitable change of variables this variational
,P

problem (Ps) in the radial space R,z(R is re-
duced to prove the classical Sobolev inequality,
which was solved by G. Talenti using the notion
of Hilbert invariant integral (Lemma 2 in [12]),
and the infimum is achieved by functions of the
form

(1.8) v(x) [a + b Ix
h= n -p(1 a + B)

Then with somewhat more calculations we see
Lemma 1.1. Assume that (1.5) and (1.7).

Then we have
(1.9) s(p, q, a,
(.o) I(p, q,

=’n" }-1 -rP

rP F(n /2) F(n / r)
where r 1 a + . In pticular if , then
we have
(1.11) SR(P, q, , , n) S(p, q, n)

N--p
where we set S(p, q, n) S(p, q, O, O, n) con-
ventionally.

Therefore we immediately get
Lemma 1.2. Assume that 1/p 1/q

1/, 1 < p < n and n > 2. Ira > 0 [respectively
< 0], then it holds that S(p, q, n) < SR(p, q,

a, , n) [respectively S(p, q, n) > S(p, q,, n)]. Here S(p, q, n) S(p, q, 0, 0, n) as

(1.11).
From this lemma it seems that if 0,

S(p, q, , , n) is also the best constant for
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the problem (P), and in the subsequent argument
this proves to be true.

Lemma 1.3. Assume that p, q, ce n
satisfy (1.5) and (1.6). Then we have the followings.
(1) If fl <_ c <_ O, then

S(p, q, or, fl, n) S(p, q, or, fl, n)
l(p, q, cr, fl, n).

(2) Assume that (1.7) instead of the inequality
(1.6). If c <-- 0 and >-- O, then

S(p, q, ce, fl, n) I(p, q, ce, fl, n).
Proof. The proof is done by the use of the

spherically symmetric decreasing rearrangement
and Lemma 1.1 and Lemma 1.2.

Now we are in a position to state our main
result.

Theorem 1.4. (1) Assume that 0 < a fl
1/2-- 1/q 1/n, n > 2. Then it holds that
(1.12) S(2, q, a, a, n) S(2, q, 0, 0, n)

S(2, q, n).
Moreover there exists no extremal function which
attains the infimum in W(Rn).
(2) Assume that cr > O, ce > fl, 0 < 1/p-
1/q (1 cr + fl) /n, n > 2 and 1 < p <

Then the infimum S(p, q, or, fl, n)
1--c+fl"
is attained by an extremal function u in W,’ (Rn)
and this u satisfies in distribution sense the equa-
tion:

(1.13) div (I z " I7u -z I7u)
S(p, q, or, fl, n) x lq u q-2u.

Remark 1. See [7], for the detailed proof of
the lemmas, Theorem 1.4 and the related in-
formations.

Remark 2. In the assertion (1), the best
constant S(p, q, or, or, n) is not known unless p

2. Because the proof in this paper essentially
depends on the linearlity of the Euler Lagrange
equation. But at least we see that S(p, q, c,
n) <- S(p, q, n) in the proof of the assertion (1).
Though the best constant in assertion (2) is also
unkown in general, we can show the following by
the method of Lagrange multiplier.

Proposition 1.5. Assume that
2(n + 2cr)

(1.14) 2cr =/3(cr)q(a), q(cr) n+2a--2’
n+2ce--2

fl(c) n + 2cr cr.

In addition we assume that 2or is a positive integer.
Then it holds that
(1.15) S(2, q(cr), cr, fl(cr), n) IR(2,

cr, fl(cr), n) S(2, 2n / (n 2), n A- 2a)
--2a/(n+2a) (F((n + 2cr) /2) )

2/(’*+2’)

rc F(n /2)
We also note that if we replace the weight

function [xby ]xn , we can show a similar re-
sult.

2. A sketch of the proof of Theorem 1.4.
For a nonnegative function f C(Rn), we de-
note by S(f) the spherically symmetric decreas-
ing rearrangement of f (the Schwarz symmetriza-
tion of f). That is:
(2.1) S(f) (x) sup(t ;(t)

(t) I{x ;f(x)
Lemma 2.1. Let S(f) be the spherically sym-

metric decreasing rearrangement of a nonnegative

function f C(R) Let g C((0, ) be a

nonnegative decreasing function. Then, for every ex-
ponent p 1, the followings hold:

(2.2) L S(f)’ dx Lf dx,

(2.3)

The next one is a variant of the Hardy-
Sobolev inequality.

Lemma 2.2. Assume that f
C0 (), R (n > 2). Let us set v(x)
S( f" u l) (x). Then it holds that

fR(2.4) n[v2dx [A(f 2[Vf[Z]dx

Proof f the Assertion 1. By the use of Lem-
ma 2.2 for f= x, D=R" and Sobolev ine-
quality without weights, we see that

(2.5) S(2, q,n) [v[qdx +a(+n--2)

Ix Ix dx.

The rest of the proof is now obvious.
Proof of the Assertion 2. Let us set for u

y(u) f u [q Ix aq
dx,

(26) E(u) Vullx dx,

S inf[E(u) ;](u) , u W,(R’)],
0<1.

Assume that (u} W,(Rn) is a minimizing
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sequence such that
(2.7) lim E(u) S=- S(p, q, a, fl, n),

J(u) 1 (j 1,2,3,...).
In order to prove the existence of the extremal
function in WA,(R’), first we show the tightness
of the sequence considered. Let us also set
(2.8) v vu [’Ix ’ + I[x ,

(R) [- pc dx (j 1,2,3,...).
R(0)

By the homogeneity we may assume from the
first

1
(2.9) Q(1) -, j 1,2,3,...

Then we see
Key lemma. For an arbitrary > O, there ex-

ists some positive number R such that we have

dx < (j 1,2,3(2.10)
n\BR(O)

P ’
After all we see that under the condition

(2.9) the minimizing sequence {u}
}W,’(R) and (p = are tight in L(R) and a

space of all bounded measures on Rnrespectively.
To see the existence of extremals, we have only
to apply an apparent variant of the concentration
compactness lemma due to P. Lions in [8] and [9].
For the complete proof see [7].

Appendix (Imbedding theorems). For the
sake of self-containedness we briefly describe
the imbedding theorems for the weighted Sobolev
spaces, which fulfil fundamental role in the argu-

ment of this paper. H2’() is defined as the
completion of Co () with respect to

A.) ;n2"n) II- - ;n)
+ I1 V I;n) II.

Imbedding Theorem A.1. Let p satisfy
p + and let n satisfy n 2. Let D be a

bounded subdomain of R. Then the following im-
beddings are valid:

Case A Suppose (1 +fl)p n, 0 1/p--
1/r (1 a + )/n and n/r
then
a.2) 2’(n) L(n),

p r np/[n -p( a + B)].
Case B Suppose (1 a + fl)p n and 0, then
(A.3) ’(R)L(R), pr<+.
Case C Suppose n (1 a + fl)p and 0, then

0,2 )(A.4) H’(R) C (R

0 <_2 <_ 1- c+t-n/p.
Moreover if 0 <- 1/p 1/ r < (1-- a + fl) / n,
then the following restrictions of the mapping de-

fined by (A.5) are compact;
(A.5) H2’ (R’*) --, L (D),

p g r < np/[n --p(1-- a + fl)].
From the assertion in the case A, we see

that W,’(Rn) H’p(Rn). The proof of this
theorem is seen in many places, for instance,
(A.2) is seen in Maz’ja’s book [10; Thorem 1 and
its corollaries in 2]. We note that these are also
obtained as a corollary to the more general im-
bedding theorem in the author’s paper [6;
Theorem 1 in 3]. If we restrict ourselves in last
statement of Theorem to consider radial func-
tions, then we have the following result.

Proposition A.2. Let B(O) be a ball with a

center being 0 in Rn. If (1 c + fl)p < n, 0 <_
1/p 1/r < (1 a + fl) /n and fl > n/r,
then the following imbedding mappings are compact:

,p n) r
(A.5) Rx(R -- L,(B(O))

p r < np/[n --p( a + /)].
In this proposition, r may exceed the

so-called Sobolev exponent np / (n p) provided
1,/> a, because elements in Ra,z(D) are essential-

ly depend upon one variable. And the proof is
elementary by the use of the polar coordinate
system. For the details see [4; Lemma 10] for in-

stance.
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