Quadratic Forms and Elliptic Curves. 1 II ${ }^{*}$

By Ken OnO ${ }^{* *)}$ and Takashi ONO***)
(Communicated by Shokichi Iyanaga, M. J. A. , Nov. 12, 1996)

There have been many investigations regarding the distribution of ranks of elliptic curves in natural families, and it is believed that the vast majority of elliptic curves E over \boldsymbol{Q} have rank ≤ 1. Consequently the identification of elliptic curves with rank ≥ 2 is of some interest. Most studies have dealt with families of elliptic curves over \boldsymbol{Q} which are quadratic twists or cubic twists of a single base curve (see [2,4]). In this note we examine elliptic curves over \boldsymbol{Q} given by the Weierstrass model
(0) $\quad E(b): y^{2}=x^{3}-\left(b^{2}+b\right) x$
where $b \neq 0,-1$ is an integer. These curves form a natural family in the sense that they all have $j=1728$ and they contain the canonical points
$P_{b}:=\left((b+1 / 2)^{2},(b+1 / 2)\left(b^{2}+b-1 / 4\right)\right)$ of infinite order which are afforded by the theory of Hopf maps. This family of curves is a special case of Theorem 3.10 [3] where many families of positive rank elliptic curves are given.

Here we show, subject to the Parity Conjecture, that one can construct infinitely many curves $E(b)$ with even rank ≥ 2. Briefly recall that the Parity Conjecture states that an elliptic curve E over \boldsymbol{Q} with rank r satisfies

$$
\begin{equation*}
(-1)^{r}=\omega(E) \tag{1}
\end{equation*}
$$

where $\omega(E)$ is the sign of the functional equation of the Hasse-Weil L-function $L(E, s)$.

First we begin with some preliminaries. Birch and Stephens (see [1]) computed the sign of the functional equation, denoted $\omega\left(E_{D}\right)$, for the elliptic curve

$$
E_{D}: y^{2}=x^{3}-D x .
$$

If $D \not \equiv 0(\bmod 4)$ is a fourth power free integer, then $\omega\left(E_{D}\right)$ is given by

[^0](2) $\omega\left(E_{D}\right):=\operatorname{sgn}(-D) \cdot \varepsilon(D) \cdot \prod_{p^{2} \| D}\left(\frac{-1}{p}\right)$, where the product is over primes $p \geq 3$, and $\varepsilon(D)$ is given by
(3) $\varepsilon(D):=$
\[

\left\{$$
\begin{aligned}
-1 & \text { if } D \equiv 1,3,11,13(\bmod 16) \\
1 & \text { if } D \equiv 2,5,6,7,9,10,14,15(\bmod 16)
\end{aligned}
$$\right.
\]

For questions concerning rank, there is no loss in generality if we assume that $D \not \equiv 0(\bmod 4)$. This follows from the fact that $y^{2}=x^{3}+D^{\prime} x$ is 2 -isogenous to $y^{2}=x^{3}-4 D^{\prime} x$.

Returning to the curves $E(b)$, we find that $b^{2}+b \equiv 0(\bmod 4)$ if and only if $b \equiv 0,3(\bmod$ 4). However it is easy to see that for such b we may assume that $b \not \equiv 0(\bmod 16)$, since $b^{2}+b$ would then be divisible by 16 , a fourth power. Consequently if $b \equiv 0,3(\bmod 4)$ and $b^{2}+b$ is fourth power free, then $\frac{b^{2}+b}{4}$ is not a multiple of 4 . So to compute $\omega(E(b)$), we simply need to compute $\omega\left(E_{\left.-\frac{b^{2}+b}{4}\right)}\right.$ using (2) and (3). In particular we find that for such b
(4) $\omega(E(b))=\varepsilon\left(-\frac{b^{2}+b}{4}\right) \cdot \Pi_{p^{2} \| b^{2}+b}\left(\frac{-1}{p}\right)$.

In particular if $b \equiv 0,3(\bmod 4)$ is an integer for which $b^{2}+b$ is fourth power free, then

$$
\omega(E(b))=\left\{\begin{array}{c}
\Pi_{p^{2}| | b^{2}+b}\left(\frac{-1}{p}\right) \tag{5}\\
\text { if } b \equiv 7,8,11,12,20,23,24,28, \\
\quad 35,39,40,43,51,52,55, \\
\quad 56(\bmod 64) \\
-\Pi_{p^{2}| | b^{2}+b}\left(\frac{-1}{p}\right) \\
\text { if } b \equiv 3,4,19,27,36,44,59,60 \\
\quad(\bmod 64) .
\end{array}\right.
$$

If $b^{2}+b \not \equiv 0(\bmod 4)$ is fourth power free, then $\omega(E(b))=\omega\left(E_{b^{2}+b}\right)$, and $\varepsilon\left(b^{2}+b\right)=1$. Therefore directly by (2) and (3) we obtain

$$
\begin{equation*}
\omega(E(b))=-\prod_{p^{2}| | b^{2}+b}\left(\frac{-1}{p}\right) . \tag{6}
\end{equation*}
$$

As a consequence of the Parity Conjecture we obtain the following immediate theorem.

Theorem. Let $b \neq 0,-1$ be an integer for
which $b^{2}+b$ is fourth power free, and define T by $T:=\operatorname{card}\{p \mid$ primes $3 \leq p \equiv 3(\bmod 4)$, $\left.p^{2} \|\left(b^{2}+b\right)\right\}$.
Assuming the Parity Conjecture, then the following are true:
(1) If $b \equiv 1,2(\bmod 4)$ and T is odd, then $E(b)$ has even rank ≥ 2.
(2) If $b \equiv 7,8,11,12,20,23,24,28,35,39,40,43$, $51,52,55,56(\bmod 64)$ and T is even, then E (b) has even rank ≥ 2.
(3) If $b \equiv 3,4,19,27,36,44,59,60(\bmod 64)$ and T is odd, then $E(b)$ has even rank ≥ 2.
(4) In all other cases, $E(b)$ has odd rank.

By part (2) of the above Theorem we obtain the following immediate corollaries:

Corollary 1. If $\quad b^{\prime} \equiv 2,3,5,6,7,10,13,14$
$(\bmod 16)$ and both b^{\prime} and $4 b^{\prime}+1$ are square-free, then assuming the Parity Conjecture $E\left(4 b^{\prime}\right)$ has even $\operatorname{rank} \geq 2$.

Corollary 2. If $b \equiv 7,11,23,35,39,43,51$,
$55(\bmod 64)$ and $\frac{b^{2}+b}{4}$ is square-free, then assuming the Parity Conjecture $E(b)$ has even rank ≥ 2.

In closing, we note that the only positive integers $b \leq 400$ for which $E(b)$ has even rank $>$ 2 are $b=156,231,387$. In these cases $E(b)$ has rank 4.

References

[1] B. J. Birch and N. M. Stephens: The parity of the rank of the Mordell-Weil group. Topology 5, 295-299 (1966).
[2] F. Gouvêa and B. Mazur: The square-free sieve and the rank of elliptic curves. J. Amer. Math. Soc., 4, 1-23 (1991).
[3] T. Ono: Quadratic forms and elliptic curves. Proc. Japan Acad., 72A, 156-158 (1996).
[4] C. Stewart and J. Top: On ranks of twists of elliptic curves and power free values of binary forms. J. Amer. Math. Soc. , 8, 947-974 (1995).

[^0]: *) The first author is supported by NSF grants DMS-9508976 and DMS-9304580.
 **) School of Mathematics, Institute for Advanced Study, U.S.A.
 ***) Department of Mathematics, The Johns Hopkins University, U.S.A.

