Quadratic Forms and Elliptic Curves. II

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U.S.A.
(Communicated by Shokichi IYANAGA., M. J. A., Oct. 14, 1996)

This is a continuation of my preceding paper [2] which will be referred to as (I) in this paper. In (I), to each quadratic space (V, q) over any field k of characteristic $\neq 2$ and a pair $w=$ (u, v) of independent and nonisotropic vectors in V, we associated an elliptic curve E_{w} over k :

$$
\begin{align*}
E_{w}: Y^{2}= & X^{3}+A_{w} X^{2}+B_{w} X .,{ }^{1)} \tag{0.1}\\
& A_{w}, B_{w} \in k
\end{align*}
$$

In this paper, we shall consider the converse problem. Thus, let E be an elliptic curve over k :

$$
\begin{align*}
& E: Y^{2}=X^{3}+A X^{2}+B X \tag{0.2}\\
& A, B \in k, B\left(A^{2}-4 B\right) \neq 0
\end{align*}
$$

We shall show that there is a quadratic space (V, q) over k and a pair $w=(u, v)$ as above so that
(0.3) $\quad E=E_{w}$. (Main Theorem).
(In fact, we can choose $V=k^{3}$ and $q(x)=x_{1}^{2}+$ $x_{2}^{2}-x_{3}^{2}$). Since E_{w} is provided with a point P_{w} $=\left(x_{w}, y_{w}\right),{ }^{2)}$ so is E, i.e., we can write down a point on $E(\bar{k})$ explicitly. When k is a number field, we can find easily a point of infinite order in $E(k)$ under simple conditions on A, B. On the other hand, statement like (0.3) may be viewed as an analogue (over any field k of characteristic $\neq 2$) of "Uniformization theorem of elliptic curves over \boldsymbol{C} ".
§1. Field of characteristic $\neq 2$. Let (V, q) be a quadratic space over a field of characteristic $\neq 2$. Consider a subset W of $V \times V$ given by
(1.1) $W=\{(u, v) \in V \times V ; u, v$ are independent and nonisotropic\}.
To each $w \in W$, we associate an elliptic curve E_{w} :
(1.2) $\quad E_{w}: Y^{2}=X^{3}+A_{w} X^{2}+B_{w} X$

1) In this paper we shall write A_{w}, B_{w} instead of P_{w}, Q_{w} in (I).We shalll also use $\langle u, v\rangle$ for inner product instead of $B(u, v)$.
2) We wrote $P_{0}=\left(x_{0}, y_{0}\right)$ in (I) for $P_{w}=\left(x_{w}, y_{w}\right)$.
3) By abuse of notation we shall identify H with the hyperbolic plane k^{2} with the metric form $q_{H}(h)=h_{2}^{2}$ $-h_{3}^{2}, h=\left(h_{2}, h_{3}\right) \in k^{2}$.
4) Since q_{H} is isotropic, it can represent any element of k.
with

$$
\begin{gather*}
A_{w}=\langle u, v\rangle=\frac{1}{2}(q(u+v)-q(u)-q(v)), \tag{1.3}\\
B_{w}=\left(\langle u, v\rangle^{2}-q(u) q(v)\right) / 4 .
\end{gather*}
$$

Conversely, let E be an elliptic curve over k of the form:

$$
\begin{gather*}
E: Y^{2}=X^{3}+A X^{2}+B X \tag{1.4}\\
A, B \in k, \quad B\left(A^{2}-4 B\right) \neq 0
\end{gather*}
$$

(1.5) Main theorem. Let k be a field, $\operatorname{ch}(k) \neq$ 2 , and q be a ternary quadratic form on the vector space $V=k^{3}$ given by $q(x)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}, x=$ $\left(x_{1}, x_{2}, x_{3}\right)$. Let $e=(1,0,0)$ and $H=\{h=(0$, $\left.\left.h_{2}, h_{3}\right) ; h_{2}, h_{3} \in k\right\} .{ }^{3)}$ For any elliptic curve E of the form (1.4), let h be a vector in H such that $q_{H}(h)=-4 B .{ }^{4)}$ Then the pair $w=(e, A e+h)$ belongs to W in (1.1) and we have $E=E_{w}$, ((1.2), (1.3)).

Proof. Put $w=(u, v)$ with $u=e, v=A e$ $+h$, where $h \in H$ is a vector such that $q_{H}(h)=$ $-4 B$. Since $(V, q)=k e \oplus\left(H, q_{H}\right)$, an orthogonal direct sum with $q(e)=1$, we have $A_{w}=$ $\langle u, v\rangle=\langle e, A e+h\rangle=A$ and $B_{w}=\left(\langle u, v\rangle^{2}\right.$
$-q(u) q(v)) / 4=\left(A^{2}-q(e) q(A e+h)\right) / 4=$ $\left(A^{2}-\left(A^{2}-4 B\right)\right) / 4=B$. Since A, B are coefficients of E, we have $0 \neq B\left(A^{2}-4 B\right)=B_{w}\left(A_{w}{ }^{2}\right.$ $\left.-4 B_{w}\right)$ and hence $w=(u, v) \in W$. Q.E.D. (1.6) Corollary. Let E be an elliptic curve of the form (1.4) over k. Then $E(\bar{k})$ contains a point $P=$ (x, y) with
$x=\left((A-1)^{2}-4 B\right) / 4, y=x^{\frac{1}{2}}\left(A^{2}-4 B-1\right) / 4$.
Proof. Using notation in the proof of (1.5), we find $q(e-v)=q(e)+q(v)-2\langle e, v\rangle=1$ $+A^{2}-4 B-2 A$ and $q(v)-q(e)=A^{2}-4 B$ -1 . Our assertion follows from (1.5) and (1.7) of (I).
Q.E.D.
§2. Number fields. Let k be a number field of finite degree over \boldsymbol{Q} and o be the ring of integers of k. For a prime ideal \mathfrak{p} of \mathfrak{o}, we denote by ν_{p} the order function on k at \mathfrak{p}. An element $a \in o$ is said to be even if $\nu_{p}(a)>0$ for some \mathfrak{p} which lies above 2 . The next theorem provides us with a family of elliptic curves over k such
that rank $E(k)$ is positive for each member E of it.
(2.1) Theorem. Let $E: Y^{2}=X^{3}+A X^{2}+B X$ be an elliptic curve such that A, B belong to 0 . If (i) A is even and (ii) there is an integer $C \in \mathfrak{o}$ such that $(A-1)^{2}-4 B=C^{2}$, then $P_{0}=\left(x_{0}, y_{0}\right)$, with $x_{0}=(C / 2)^{2}, y_{0}=(C / 2)\left(C^{2}+2(A-1)\right) / 4$, is a point of infinite order in $E(k)$.

Proof. First of all, P_{0} belongs to $E(k)$ by (ii) and (1.6). Next, assume, on the contrary, that P_{0} is of order $m \geq 2$. If $m=2$, then P_{0} is a 2 -torsion point; so $y_{0}=0$. By (i), let \mathfrak{p} be a prime over 2 such that $\nu_{p}(A)>0$. Then, by (ii), we have $\nu_{p}(C)=0$; in particular, $C \neq 0$. Hence the relation $0=y_{0}=(C / 2)\left(C^{2}+2(A-1)\right) / 4$ implies that $C^{2}=2(A-1)$, contradicting $\nu_{p}(C)$ $=0$. Thus we may assume that $m>2$. From this point on, we need a generalization of the Nagell-Lutz theorem ([3] p. 220, Theorem 7.1). ${ }^{5}$) This theorem, when applied to our $P_{0}=\left(x_{0}, y_{0}\right)$, says:
(a) If m is not a prime power, then $x_{0}, y_{0} \in \mathfrak{o}$.
(b) If $m=l^{n}$ is a prime power, for each prime ideal \mathfrak{q} of o let
$r_{\mathrm{q}}=\left[\nu_{\mathrm{q}}(l) /\left(l^{n}-l^{n-1}\right)\right]([\quad]=$ the integral part $)$. Then $\nu_{q}\left(x_{0}\right) \geq-2 r_{q}$ and $\nu_{q}\left(y_{0}\right) \geq-3 r_{q}$. In particular, x_{0} and y_{0} are \mathfrak{q}-integral if $\nu_{q}(l)=0$.

Now, as we saw $\nu_{\mathfrak{p}}(C)=0$ for a \mathfrak{p} above 2 , we have $\nu_{\mathfrak{p}}\left(x_{0}\right)=-2 \nu_{\mathfrak{p}}(2)<0$; hence $x_{0} \notin \mathfrak{D}$, showing that the case (a) does not occur. Next, for the case (b), assume first that $l \neq 2$. Then for that prime \mathfrak{p} over 2 we have $\nu_{p}(l)=0$ and so, by the last italicized sentence in (b), 0 $\leq \nu_{\mathfrak{p}}\left(x_{0}\right)=-2 \nu_{p}(2)<0$, and the case $l \neq 2$ does not occur also. Finally, it remains the case $m=2^{n}, n \geq 2$. Again for that \mathfrak{p}, put $e=\nu_{p}(2)$. If we write $e=s 2^{n-1}+r$, with $0 \leq r \leq 2^{n-1}$, we have $r_{p}=s$. Hence (b) implies that $-2 s$
$\leq \nu_{p}\left(x_{0}\right)=2 \nu_{p}(C)-2 \nu_{p}(2)=-2 \nu_{p}(2)=$ $-2 e ;$ so $s \geq e \geq s 2^{n-1}$, which is impossible because $n \geq 2$.
Q.E.D.
§3. Algebraically closed fields. Assume that our basic field k is algebraically closed of characteristic $\neq 2$. Let q be the ternary quadratic form on $v=k^{3}$ defined by $q(x)=x_{1}^{2}+x_{2}^{2}-$
5) This portion of the proof is the same as in the proof of (2.3) in [1]. In view of the change of situation, however, we find it convenient to repeat it.
6) Namely, take an $s \in G L(V)$ so that $s a u=u^{\prime}$, $s v=s v^{\prime}$. Then (3.9) implies $s \in O(q)$.
x_{3}^{2}. We have defined a set W in $V \times V$, (1.1). Now call \boldsymbol{E} the totality of elliptic curves E over k of the form (1.4). Then, by (1.2), (1.3), we have a map $\pi: W \rightarrow \boldsymbol{E}$ given by
(3.1) $\pi(w)=E_{w}: Y^{2}=X^{3}+A_{w} X^{2}+B_{w} X$.

We know that π is surjective by (1.5). On the other hand, to describe fibres of π, it is convenient to limit ourselves to the case where k is algebraically closed. Denote by $O(q)$ the orthogonal group of q. We need also the following group:
(3.2)

$$
G(q)=k^{\times} \times O(q)
$$

This group $G(q)$ acts on W by the rule:
(3.3) $(a, s) w=\left(a s u, a^{-1} s v\right)$,

$$
a \in k^{\times}, s \in O(q), w=(u, v) \in W
$$

One checks easily that
(3.4) $\quad \pi(g w)=\pi(w), \quad g \in G(q)$.

Passing to the quotient, the $\operatorname{map} \pi: w \rightarrow \boldsymbol{E}$ induces a map

$$
\begin{equation*}
\tilde{\pi}: \tilde{W}=G(q) \backslash W \rightarrow \boldsymbol{E} \tag{3.5}
\end{equation*}
$$

which is surjective.
(3.6) Theorem. The map $\tilde{\pi}$ is a bijection: $\tilde{W}=$ $G(q) \backslash w \xrightarrow{\sim} \boldsymbol{E}$.

Proof. We have only to check that $\tilde{\pi}$ is injective. So take two points $w, w^{\prime} \in W$ such that $E_{w}=E_{w^{\prime}}$, i.e., $A_{w}=A_{w^{\prime}}$ and $B_{w}=B_{w^{\prime}}$. In other words, consider $w=(u, v), w^{\prime}=\left(u^{\prime}, v^{\prime}\right) \in W$ such that
(3.7) $\langle u, v\rangle=\left\langle u^{\prime}, v^{\prime}\right\rangle$ and

$$
\langle u, v\rangle^{2}-q(u) q(v)=\left\langle u^{\prime}, v^{\prime}\right\rangle^{2}-q\left(u^{\prime}\right) q\left(v^{\prime}\right)
$$ or

(3.8) $\langle u, v\rangle=\left\langle u^{\prime}, v^{\prime}\right\rangle$ and $q(u) q(v)=q\left(u^{\prime}\right) q\left(v^{\prime}\right)$. Since k is algebraically closed and $q(u) q(v) \neq 0$, there is an $a \in k^{\times}$so that $q(a u)=q\left(u^{\prime}\right)$; hence $q\left(a v^{\prime}\right)=q(v)$ by (3.8). Therefore, (3.8) amounts to the condition:
(3.9) $\langle a u, v\rangle=\left\langle u^{\prime}, a v^{\prime}\right\rangle, q(a u)=q\left(u^{\prime}\right)$ and $q(v)=q\left(a v^{\prime}\right)$.
Our assertion then follows from (3.9), the independence of u, v and the $S A S$-theorem on triangles in the metric space $(V, q){ }^{6)} \quad$ Q.E.D.
(3.10) Corollary. Let k be an algebraically closed field of characteristic $\neq 2$ and let E be an elliptic curve $Y^{2}=X^{3}+A X^{2}+B X$ over $k, B\left(A^{2}-4 B\right)$ $\neq 0$.. Then, for any $a \in k^{\times}$, the point $P_{a}=\left(x_{a}\right.$, y_{a}) belongs to $E(k)$, where

$$
\left\{\begin{array}{l}
x_{a}=\left(a^{2}+a^{-2}\left(A^{2}-4 B\right)-2 A\right) / 4 \\
y_{a}=x_{a}^{\frac{1}{2}}\left(a^{2}-a^{-2}\left(A^{2}-4 B\right)\right) / 4
\end{array}\right.
$$

Proof. We know that $w=(e, A e+h)$, with
$q_{H}(h)=-4 B$, is a point in W such that $\pi(w)$ $=E$, ((1.5)). By (3.6), any other point w^{\prime} such that $\pi\left(w^{\prime}\right)=E$ is of the form $w^{\prime}=g w$, with g $=(a, s) \in G(q)$. Our assertion follows if one computes the coordinates x_{0}, y_{0} of the point P_{0} in $E_{w^{\prime}}=E$ by making use of the explicit formula in (1.7) of (I).
Q.E.D.
(3.11) Remark. Needless to say, one verifies (3.10) derectly. Be that as it may, it is nice to have found a (double valued) map $a \mapsto P_{a}=\left(x_{a}\right.$, y_{a}) form k^{\times}to E in (3.10), (end of remark).

Since k is algebraically closed, one should classify \boldsymbol{E} according to isomorphisms over k. If $E, E^{\prime} \in \boldsymbol{E}$ are given by Weierstrass form of type (1.4) with coefficients $(A, B),\left(A^{\prime}, B^{\prime}\right)$, respectively, then, as is well-known, we have (3.12) $\quad E \simeq E^{\prime} \Leftrightarrow$

$$
\left\{\begin{array}{l}
u^{2} A^{\prime}=A+3 r \\
u^{4} B^{\prime}=B+2 A r+3 r^{2} \\
0=r\left(B+A r+r^{2}\right), u(\neq 0), r \in k \\
\quad \Leftrightarrow j(E)=j\left(E^{\prime}\right)
\end{array}\right.
$$

where
(3.13) $j(E)=2^{8}\left(A^{2}-3 B\right)^{3} /\left(B^{2}\left(A^{2}-4 B\right)\right)$.

In view of (3.6), we can view j as a function of $w=(u, v) \in W:$
$(3.14) j(\pi(w))=2^{6}\left(\langle u, v\rangle^{2}+3 q(u) q(v)\right)^{3}$

$$
/\left(q(u) q(v)\left(\langle u, v\rangle^{2}-q(u) q(v)\right)^{2}\right)
$$

In particular,
(3.15) $j(\pi(w))=2^{6} 3^{3} \Leftrightarrow\langle u, v\rangle=0$ or

$$
\pm 3(q(u) q(v))^{\frac{1}{2}}
$$

§4. Real number field. Taking $V=\boldsymbol{R}^{2}$, consider the standard quadratic form $q(x)=x_{1}^{2}$ $+x_{2}^{2}, x=\left(x_{1}, x_{2}\right)$. Hence the metric space (V, q) is the space of plane Euclidean geometry. Here, the set W is nothing but the set of pairs $w=(u, v)$ of independent vectors; namely triangles (a, b, c) such that $a^{2}=q(u), b^{2}=$ $q(v)$ and $c^{2}=q(u-v)=q(u)+q(v)-2\langle u, v\rangle$, (the law of cosine). We have

$$
\left\{\begin{align*}
& A_{w}=\langle u, v\rangle=\frac{1}{2}\left(a^{2}+b^{2}-c^{2}\right) \tag{4.1}\\
& B_{w}=\left(\langle u, v\rangle^{2}-q(u) q(v)\right) / 4= \\
&-s(s-a)(s-b)(s-c)
\end{align*}\right.
$$

The elliptic curve E_{w} is the one introduced in [1] in connection with the antique congruent number problem. Needless to say, if we pursue an analogous theme for (V, q) with $V=\boldsymbol{R}^{3}, q(x)=x_{1}^{2}$ $+x_{2}^{2}+x_{3}^{2}\left(\right.$ resp. $\left.q(x)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}\right)$, then we will be led to triangles on the sphere $q(x)=1$ (resp. on the upper half of the hyperboloid of two sheets $q(x)=-1$). We hope to come back sometime to the study of such a relationship between non-Euclidean geometry and elliptic curves.

References

[1] T. Ono: Triangles and elliptic curves. Proc. Japan Acad., 70A, 106-108 (1994).
[2] T. Ono: Quadratic forms and elliptic curves. Proc. Japan Acad., 72A, 156-158 (1996).
[3] J. H. Silverman: The Arithmetic of Elliptic Curves. Springer, New York (1986).

