Quadratic Forms and Elliptic Curves. II

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA., M. J. A., Oct. 14, 1996)

This is a continuation of my preceding paper [2] which will be referred to as (I) in this paper. In (I), to each quadratic space (V, q) over any field k of characteristic $\neq 2$ and a pair w =(u, v) of independent and nonisotropic vectors in V, we associated an elliptic curve E_w over k: (0.1) $E_w: Y^2 = X^3 + A_w X^2 + B_w X$.,¹⁾ $A_w, B_w \in k$.

In this paper, we shall consider the converse problem. Thus, let E be an elliptic curve over k: (0.2) $E: Y^2 = X^3 + AX^2 + BX$,

$$A, B \in k, B(A^2 - 4B) \neq 0$$

We shall show that there is a quadratic space (V, q) over k and a pair w = (u, v) as above so that

(0.3) $E = E_w$. (Main Theorem). (In fact, we can choose $V = k^3$ and $q(x) = x_1^2 + x_2^2 - x_3^2$). Since E_w is provided with a point $P_w = (x_w, y_w)$,²⁾ so is E, i.e., we can write down a point on $E(\bar{k})$ explicitly. When k is a number field, we can find easily a point of infinite order in E(k) under simple conditions on A,B. On the other hand, statement like (0.3) may be viewed as an analogue (over any field k of characteristic $\neq 2$) of "Uniformization theorem of elliptic curves over C".

§1. Field of characteristic $\neq 2$. Let (V, q)be a quadratic space over a field of characteristic $\neq 2$. Consider a subset W of $V \times V$ given by (1.1) $W = \{(u, v) \in V \times V : u, v \text{ are}\}$

To each $w \in W$, we associate an elliptic curve E_w :

(1.2)
$$E_w: Y^2 = X^3 + A_w X^2 + B_w X$$

1) In this paper we shall write A_w , B_w instead of P_w , Q_w in (I).We shall also use $\langle u, v \rangle$ for inner product instead of B(u, v).

2) We wrote $P_0 = (x_0, y_0)$ in (I) for $P_w = (x_w, y_w)$.

3) By abuse of notation we shall identify H with the hyperbolic plane k^2 with the metric form $q_H(h) = h_2^2 - h_3^2$, $h = (h_2, h_3) \in k^2$.

4) Since q_H is isotropic, it can represent any element of k.

with

(1.3)
$$A_w = \langle u, v \rangle = \frac{1}{2} (q(u+v) - q(u) - q(v)),$$
$$B_w = (\langle u, v \rangle^2 - q(u)q(v))/4.$$

Conversely, let E be an elliptic curve over k of the form:

(1.4)
$$E: Y^2 = X^3 + AX^2 + BX$$

 $A, B \in k, \quad B(A^2 - 4B) \neq 0.$

(1.5) **Main theorem.** Let k be a field, $ch(k) \neq 2$, and q be a ternary quadratic form on the vector space $V = k^3$ given by $q(x) = x_1^2 + x_2^2 - x_3^2$, $x = (x_1, x_2, x_3)$. Let e = (1,0,0) and $H = \{h = (0, h_2, h_3); h_2, h_3 \in k\}$.³⁾ For any elliptic curve E of the form (1.4), let h be a vector in H such that $q_H(h) = -4B$.⁴⁾ Then the pair w = (e, Ae + h) belongs to W in (1.1) and we have $E = E_w$, ((1.2), (1.3)).

Proof. Put w = (u, v) with u = e, v = Ae + h, where $h \in H$ is a vector such that $q_H(h) = -4B$. Since $(V, q) = ke \oplus (H, q_H)$, an orthogonal direct sum with q(e) = 1, we have $A_w = \langle u, v \rangle = \langle e, Ae + h \rangle = A$ and $B_w = (\langle u, v \rangle^2 - q(u)q(v))/4 = (A^2 - q(e)q(Ae + h))/4 = (A^2 - (A^2 - 4B))/4 = B$. Since A, B are coefficients of E, we have $0 \neq B(A^2 - 4B) = B_w(A_w^2 - 4B_w)$ and hence $w = (u, v) \in W$. Q.E.D. (1.6) Corollary. Let E be an elliptic curve of the form (1.4) over k. Then $E(\bar{k})$ contains a point P = (x, y) with

$$x = ((A-1)^2 - 4B)/4, y = x^{\frac{1}{2}}(A^2 - 4B - 1)/4.$$

Proof. Using notation in the proof of (1.5), we find $q(e - v) = q(e) + q(v) - 2\langle e, v \rangle = 1$ $+ A^2 - 4B - 2A$ and $q(v) - q(e) = A^2 - 4B$ - 1. Our assertion follows from (1.5) and (1.7) of (I). Q.E.D.

§2. Number fields. Let k be a number field of finite degree over Q and \mathfrak{o} be the ring of integers of k. For a prime ideal \mathfrak{p} of \mathfrak{o} , we denote by $\nu_{\mathfrak{p}}$ the order function on k at \mathfrak{p} . An element $a \in o$ is said to be *even* if $\nu_{\mathfrak{p}}(a) > 0$ for some \mathfrak{p} which lies above 2. The next theorem provides us with a family of elliptic curves over k such that rank E(k) is positive for each member E of it.

(2.1) **Theorem.** Let $E: Y^2 = X^3 + AX^2 + BX$ be an elliptic curve such that A, B belong to o. If (i) A is even and (ii) there is an integer $C \in o$ such that $(A-1)^2 - 4B = C^2$, then $P_0 = (x_0, y_0)$, with $x_0 = (C/2)^2$, $y_0 = (C/2)(C^2 + 2(A-1))/4$, is a point of infinite order in E(k).

Proof. First of all, P_0 belongs to E(k) by (ii) and (1.6). Next, assume, on the contrary, that P_0 is of order $m \ge 2$. If m = 2, then P_0 is a 2-torsion point; so $y_0 = 0$. By (i), let \mathfrak{p} be a prime over 2 such that $\nu_{\mathfrak{p}}(A) > 0$. Then, by (ii), we have $\nu_{\mathfrak{p}}(C) = 0$; in particular, $C \ne 0$. Hence the relation $0 = y_0 = (C/2)(C^2 + 2(A - 1))/4$ implies that $C^2 = 2(A - 1)$, contradicting $\nu_{\mathfrak{p}}(C)$ = 0. Thus we may assume that m > 2. From this point on, we need a generalization of the Nagell-Lutz theorem ([3] p. 220, Theorem 7.1).⁵⁾ This theorem, when applied to our $P_0 = (x_0, y_0)$, says:

(a) If *m* is not a prime power, then $x_0, y_0 \in \mathfrak{o}$.

(b) If $m = l^n$ is a prime power, for each prime ideal q of \mathfrak{o} let

 $\begin{aligned} r_{q} &= \left[\nu_{q}(l)/(l^{n}-l^{n-1})\right] \ ([] = the integral part).\\ Then \ \nu_{q}(x_{0}) &\geq -2r_{q} \ and \ \nu_{q}(y_{0}) \geq -3r_{q}. \ In \ particular, \ x_{0} \ and \ y_{0} \ are \ q-integral \ if \ \nu_{q}(l) = 0. \end{aligned}$

Now, as we saw $\nu_{\mathfrak{p}}(C) = 0$ for a \mathfrak{p} above 2, we have $\nu_{\mathfrak{p}}(x_0) = -2\nu_{\mathfrak{p}}(2) < 0$; hence $x_0 \notin \mathfrak{o}$, showing that the case (a) does not occur. Next, for the case (b), assume first that $l \neq 2$. Then for that prime \mathfrak{p} over 2 we have $\nu_{\mathfrak{p}}(l) = 0$ and so, by the last italicized sentence in (b), $0 \leq \nu_{\mathfrak{p}}(x_0) = -2\nu_{\mathfrak{p}}(2) < 0$, and the case $l \neq 2$ does not occur also. Finally, it remains the case $m = 2^n$, $n \geq 2$. Again for that \mathfrak{p} , put $e = \nu_{\mathfrak{p}}(2)$. If we write $e = s2^{n-1} + r$, with $0 \leq r \leq 2^{n-1}$, we have $r_{\mathfrak{p}} = s$. Hence (b) implies that $-2s \leq \nu_{\mathfrak{p}}(x_0) = 2\nu_{\mathfrak{p}}(C) - 2\nu_{\mathfrak{p}}(2) = -2\nu_{\mathfrak{p}}(2) = -2e$; so $s \geq e \geq s2^{n-1}$, which is impossible because $n \geq 2$.

§3. Algebraically closed fields. Assume that our basic field k is algebraically closed of characteristic $\neq 2$. Let q be the ternary quadratic form on $v = k^3$ defined by $q(x) = x_1^2 + x_2^2 - x_2^2 + x$

6) Namely, take an $s \in GL(V)$ so that sau = u', sv = sv'. Then (3.9) implies $s \in O(q)$.

 x_3^2 . We have defined a set W in $V \times V$, (1.1). Now call E the totality of elliptic curves E over k of the form (1.4). Then, by (1.2), (1.3), we have a map $\pi: W \to E$ given by

 $(3.1)\pi(w) = E_w : Y^2 = X^3 + A_w X^2 + B_w X.$

We know that π is surjective by (1.5). On the other hand, to describe fibres of π , it is convenient to limit ourselves to the case where k is algebraically closed. Denote by O(q) the orthogonal group of q. We need also the following group:

$$(3.2) G(q) = k^{\star} \times O(q).$$

This group G(q) acts on W by the rule:

(3.3) $(a, s)w = (asu, a^{-1}sv),$

$$a \in k^{\times}, s \in O(q), w = (u, v) \in W$$

One checks easily that

(3.4) $\pi(gw) = \pi(w), \quad g \in G(q).$

Passing to the quotient, the map $\pi: w \to E$ induces a map

$$(3.5) \qquad \tilde{\pi}: \tilde{W} = G(q) \setminus W \to E$$

which is surjective. (2.6) **Theorem** The map $\tilde{\sigma}$

(3.6) **Theorem.** The map $\tilde{\pi}$ is a bijection: $\tilde{W} = G(q) \setminus w \xrightarrow{\sim} E$.

Proof. We have only to check that $\tilde{\pi}$ is injective. So take two points $w, w' \in W$ such that $E_w = E_{w'}$, i.e., $A_w = A_{w'}$ and $B_w = B_{w'}$. In other words, consider $w = (u, v), w' = (u', v') \in W$ such that

(3.7)
$$\langle u, v \rangle = \langle u', v' \rangle$$
 and
 $\langle u, v \rangle^2 - q(u)q(v) = \langle u', v' \rangle^2 - q(u')q(v')$

or

(3.8) $\langle u, v \rangle = \langle u', v' \rangle$ and q(u)q(v) = q(u')q(v'). Since k is algebraically closed and $q(u)q(v) \neq 0$, there is an $a \in k^{\times}$ so that q(au) = q(u'); hence q(av') = q(v) by (3.8). Therefore, (3.8) amounts to the condition:

(3.9)
$$\langle au, v \rangle = \langle u', av' \rangle, q(au) = q(u')$$
 and $q(v) = q(av').$

Our assertion then follows from (3.9), the independence of u, v and the SAS-theorem on triangles in the metric space (V, q).⁶⁾ Q.E.D. (3.10) **Corollary.** Let k be an algebraically closed field of characteristic $\neq 2$ and let E be an elliptic curve $Y^2 = X^3 + AX^2 + BX$ over k, $B(A^2 - 4B) \neq 0$. Then, for any $a \in k^{\times}$, the point $P_a = (x_a, y_a)$ belongs to E(k), where

$$\begin{cases} x_a = (a^2 + a^{-2}(A^2 - 4B) - 2A)/4, \\ y_a = x_a^{\frac{1}{2}}(a^2 - a^{-2}(A^2 - 4B))/4. \end{cases}$$
Proof. We know that $w = (e, Ae + h)$, with

⁵⁾ This portion of the proof is the same as in the proof of (2.3) in [1]. In view of the change of situation, however, we find it convenient to repeat it.

 $q_H(h) = -4B$, is a point in W such that $\pi(w) = E$, ((1.5)). By (3.6), any other point w' such that $\pi(w') = E$ is of the form w' = gw, with $g = (a, s) \in G(q)$. Our assertion follows if one computes the coordinates x_0, y_0 of the point P_0 in $E_{w'} = E$ by making use of the explicit formula in (1.7) of (I). Q.E.D. (3.11) **Remark.** Needless to say, one verifies (3.10) derectly. Be that as it may, it is nice to have found a (double valued) map $a \mapsto P_a = (x_a, y_a)$ form k^{\times} to E in (3.10), (end of remark).

Since k is algebraically closed, one should classify E according to isomorphisms over k. If $E, E' \in E$ are given by Weierstrass form of type (1.4) with coefficients (A, B), (A', B'), respectively, then, as is well-known, we have $(3.12) \quad E \simeq E' \Leftrightarrow$

$$\begin{cases} u^{2}A' = A + 3r, \\ u^{4}B' = B + 2Ar + 3r^{2}, \\ 0 = r(B + Ar + r^{2}), \ u(\neq 0), \ r \in k, \\ \Leftrightarrow j(E) = j(E'), \end{cases}$$

where

(3.13) $j(E) = 2^8 (A^2 - 3B)^3 / (B^2 (A^2 - 4B)).$ In view of (3.6), we can view j as a function of $w = (u, v) \in W$: (3.14) $j(\pi(w)) = 2^6 (\langle u, v \rangle^2 + 3q(u)q(v))^3 / (q(u)q(v)(\langle u, v \rangle^2 - q(u)q(v))^2).$ In particular, (3.15) $j(\pi(w)) = 2^6 3^3 \Leftrightarrow \langle u, v \rangle = 0$ or

$$\pm 3(q(u)q(v))^{\frac{1}{2}}$$
.

§4. Real number field. Taking $V = \mathbf{R}^2$, consider the standard quadratic form $q(x) = x_1^2$ $+ x_2^2$, $x = (x_1, x_2)$. Hence the metric space (V, q) is the space of plane Euclidean geometry. Here, the set W is nothing but the set of pairs w = (u, v) of independent vectors; namely triangles (a, b, c) such that $a^2 = q(u), b^2 =$ q(v) and $c^2 = q(u - v) = q(u) + q(v) - 2\langle u, v \rangle$, (the law of cosine). We have

(4.1)
$$\begin{cases} A_w = \langle u, v \rangle = \frac{1}{2} (a^2 + b^2 - c^2) \\ B_w = (\langle u, v \rangle^2 - q(u)q(v))/4 = \\ - s(s-a)(s-b)(s-c) \end{cases}$$

The elliptic curve E_w is the one introduced in [1] in connection with the antique congruent number problem. Needless to say, if we pursue an analogous theme for (V, q) with $V = \mathbf{R}^3$, $q(x) = x_1^2$ $+ x_2^2 + x_3^2$ (resp. $q(x) = x_1^2 + x_2^2 - x_3^2$), then we will be led to triangles on the sphere q(x) = 1(resp. on the upper half of the hyperboloid of two sheets q(x) = -1). We hope to come back sometime to the study of such a relationship between non-Euclidean geometry and elliptic curves.

References

- T. Ono: Triangles and elliptic curves. Proc. Japan Acad., 70A, 106-108 (1994).
- [2] T. Ono: Quadratic forms and elliptic curves. Proc. Japan Acad., 72A, 156-158 (1996).
- [3] J. H. Silverman: The Arithmetic of Elliptic Curves. Springer, New York (1986).