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1. Introduction 1.1. In [3], we generalized
the definitions of Hasse zeta functions of com-
mutative finitely generated rings over the ring Z
of integers, to non-commutative rings. In this
paper we compute the Hasse zeta functions of the
enveloping algebras of completely solvable Lie
algebras having p-mappings.

For a (not necessarily commutative) finitely
generated ring A over Z, in [3] we defined the
Hasse zeta function A(S) of A by

A (S) II A,r(S)
r>_l

where r runs over integers --> 1 and,

A,r(S) II exp X
# a,r(pn) (p-s)n

P n=l

where A,r is a certain scheme of finite type over

Z, p runs over prime numbers, and i’ is a fi-
nite field with pn elements, so the function A,r(S)
coincides with the product of Weil’s zeta func-
tions of A,r 2P [2] for all prime numbers p.
We do not review the definition of A,r, but what
we need in this paper is that for the algebraic
closure K of , A,r(K)is identified with the
set of all isomorphism classes of r-dimensional
irreducible representations of A over K, and
A,r(lpn) is identified with the Gal(K/I’)-
fixed part of A,r(K).

It has the expression
A(S) II (1 --N(M)-S) -1

M

where M runs over the isomorphism classes of fi-
nite simple A-modules and N(M) # EndA(M).

1.2. Recall that a solvable Lie algebra g
over a field is said to be completely solvable if
[g, g] is nilpotent. (See [1].)

We obtain the following result.
Theorem 1.3. Let R be a commutative finitely

generated ring over Z. Let g be a Lie algebra over
R which is free of finite rank n as an R-module,
and let A be the universal enveloping algebra of g.
Assume that for each maximal ideal ra of R, g/rag
is a completely solvable Lie algebra over R/ra and

has a p- mapping (see 11). Then we have that the

function A (S) converges, and

A (S) R (S n)
Remark 1.3.1. For x , let ad(x) be the

inner derivation of g defined by x, that is,

ad(x) (y) [x, y] for g. For a Lie algebra g
over a field of characteristic p, g has a p-mapping
[p] if and only if the following condition holds" For
any x g, there exists g such that (ad(x)) p

ad(y).
1.4. Example. Every nilpotent Lie algebra

0g such that gP 0 (g is defined by g g and
i+1[g, g] g for --> 0) satisfies the condition of

Theorem 1.3. This is because (ad(x))- 0 for
anyx g.

In section 2, we prove Theorem 1.3.
would like to express my hearty gratitude

to Professor Kazuya Kato for advice and en-
couragement.

2. Broof of Theorem 1.3. In this section
we prove Theorem 1.3.

2.1. The zeta functions R(S), A(S) are
products of R/m(S),, A/mA(S) over all maximal
ideals ra of R, respectively, and A/raA are the
universal enveloping algebras of g/rag over the
finite fields R/ra. So we may assume that R is a
finite field k of characteristic p. Let K be the
algebraic closure of k.

Theorem 1.3 follows from
Proposition 2.2. Let g be a completely solv-

able Lie algebra over a finite field k of characteritic
p > 0 of finite dimension n which has a p-mapping
[p]. Let A be the universal enveloping algebra of g,
and let Fq be a finite extension of k. Then we have

# A (Fq) qn
where A II rlA,r a?4d kA (Fq) denotes the set

of Fq-rational points of A as a k- scheme.
We prove Proposition 2.2 in 2.3 and 2.4.
2.3. There is a surjective map 9 from

A (K) onto Ken, the direct sum of n copies of K.
Fix a basis (e)ln of g. For an element x of
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(K), this map p is defined by p(x)
(S(ei))l<i<n where S is the "character" of x in
the sense of [1] 5.2 (S is a k-linear map g---* K
such that S(a) =x(a)-x(aIl) for all a
g). q9 is surjective by Corollary 3.2 in Chapter 5
in [1].

The map cp is compatible with the action of
the Galois group Gal(K/k).

In what follows, we take a p-mapping of the
Lie algebra g such that

ht 0 for any central element h of ft.
In fact we can take such a p-mapping by Corol-
lary 2.2 (3) in Chapter 2 in [1].

Let

Let

and let

,
g HOme_linear(g K).

,
X- (a9 ;a([9,9])=0),

G (ce X ;a(h tp) a(h) p

for any element h }.
We regard X as the set of all one dimensional
representations of g over K. Remark that G is a
finite abelian group (see Proposition 8.8 (1) in
Chapter 5 in [1]).

Notation. For x (K), and for c X,
we denote by x -+- c the tensor product of x and c
(as representation).

We use the following result in [1] Chapter 5,
Theorem 8.7.

2.3.1. Let x and x’ be elements of (K).
Then p(x) p(x’) if and only if there exists an

element c of G such that x’ x + c.
2.4. Let

Frob" K--* K ;x xg.
We denote the map (K)--* (K) induced by
Frobq also by Frobq. By 2.3.1, we have that the

Ks n
image of x (K) in under the map p is
an Fq-rational point if and only if there exists an
element a of G such that

Frob(x) x + a.
For a G, we put

F {x (K); Frob(x) x + a}.
The following two lemmas 2.4.1 and 2.4.2 prove
Proposition 2.2.

Lemma 2.4.1. The following equation holds

for any a G.
# Fa #

Proof There exists b X which satisfies
a Frobq(b)- b. This is because K is algeb-
raically closed. For x (K), the condition
x Fa is equivalent to Frobq(x) x + Frob(b)

b, and hence to Frobq(x- b) x- b. Hence
there is a bijection from Fa into A(Fq) by x
x-b.

Lemma 2.4.2. The following equation holds

for any a G.
# Fa qn.

To prove Lemma 2.4.2, we use the following
Lemma 2.4.3-Lemma2.4.5.

Lemma 2.4.3. For each x A(K), let Gx
be the subgroup of G defined by

Gx (a G;x+c=x}.
Under the canonical map IIaeaFa’-* U aea Fa
q-i (Fn) c Ae (K), the inverse image of an ele-
ment x of U aeaFa is of order # (Gx).

Proof. For x Fa and a’ G, the condi-
tion x Fa+a, is equivalent to the condition a’
Gx. This proves the result. [--]

Lemma 2.4.4. For any x U aaFa, the
-1

order of q (q (x)) is # (G / Gx).
Proof. p-1 (p (x)) is the G-orbit of x, and

hence its order is equal to # (G/Gx).
Lemma 2.4.5. For x - U aGFa and x’

-1 ((x)), Gx Gx,.
Proof. This follows from the fact that x’ be-

longs to the G-orbit of x and G is commutative.

Now we prove Lemma 2.4.2. By Lemma
2.4.3-Lemma2.4.5, the inverse image of any ele-
ment of Fn

under the map qg’IIaeaFa F*n

is of order #(G). By Lemma 2.4.1, #(Fa) is in-
dependent of a G. Hence # (G)" # (Fa)
# (G)’qn. This shows #(Fa) qn.
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