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A Trace Formula for the Picard Group. I
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1. Statement of the result. The aim of the
present note is to report the analogue of the Kuz-
netsov trace formula for the Picard group F--
PSL(2, Z[i]) acting discontinuously over the
Beltrami model of the three dimensional
Lobachevsky geometry (i.e., the hyperbolic upper
half-space H3). Our argument is an extension of
one of our proofs [3, Section 2.7] of the ordinary
Kuznetsov trace formula. We stress that the
Picard group has been chosen as a model case. In
fact the argument can well be applied to Bianchi
groups over arbitrary imaginary quadratic num-

ber fields with some extra technical complexities.
Our trace formula should have applications to the
analytic theory of imaginary quadratic number
fields in much the same way as the original Kuz-
netsov formula has been applied to various im-
portant problems in the rational number field.
The binary additive divisor problem over imagin-
ary quadratic number fields is one of our targets.
It is of particular importance because of its rela-
tion with the mean-value problem of Dedekind
zeta-functions of respective fields. Such an ap-
plication will, however, require an enhancement
of our formula with the incorporation of Grt)ssen-

charakters. To these topics and the details of the
proof we shall return elsewhere.

To state our trace formula we need some de-
finitions: We denote a point of H by z (x, y)
with x x + xi (x, x R) and y > 0. Then
the hyperbolic volume element is dl(z)
-3y dxdx.dy, and the hyperbolic Laplace-

2
Beltrami operator is A y ((/x) -+-
(/xe) + (/y)e) + y(/y). The set of all

HF-invariant functions over which are square
integrable with respect to dp over the hyperbolic
three-manifold Y /\Ha

constitutes the Hil-
Lbert space (Y, d/). The non-trivial discrete

Lspectrum of A over (Y, d) is denoted by

{ 1 +x’j= 1,2,...} where x > 0, and
the corresponding orthonormal system of eigen-
functions by {}. We have the Fourier expan-

sion

(z) y E p(n)K,(2[ nl y)e((n, x>).
nZ[il,nO

Here K is the K-Bessel function of order
e(a) exp(2zcia), and (n, x) Re(n). We in-

troduce also the Kloosterman sum

S(m, n ;1) e((m, v/1)
v(mod l),(v,l)=l

+ (n, v*/l>), (l, m, n Z[i]),
where vv 1 mod l. Further we shall need the
Dedekind zeta-function of Q(i)as well as the

divisor function au(n)
Our trace formula is embodied in
Theorem. Let us assume that the function

h(r), r C, is regular in the horizontal strip
1

Im r < + e and satisfies
h(r) h(--r), h(r) << (1 +lrl) --*

with an arbitrary fixed > O. Then we have, for
any non-zero m, n Z[i ],

= sinh(x) xh(x)

2: a’r(m) air(n)+ 2
mnl I- - h(r)dr

(8,n + 8,-n) rh(r)dr

+ ll-S(m, n;l)h(2)
i[i],lO

with w z.=mn/ Here 6m,n is the Kronecker delta,
and

(t) sinh(f) J(t)J(t)h(f)df

with J being the J-Bessel fnction of order. Sketch f the rf. First we introduce
the non-holomorphic Poincar series over
For m [i] we put.

rrtr

where Ft is the translation subgroup in F (see
Sarnak [51). Expanding this into a double Fourier
series with respect to the variables x, x we get
immediately
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Pm(z, s) 2ys exp(-- 2Trimly) cos(27r(m, x))

-4- y.-s
nZ[i] lZ[i],l,=O

S(m, n l)As(m, n ;),
where

( x + i).
This expansion and an estimate of S(m, n;/)
obtainable by the argument due to Gundlach [2]
imply that Pro(z, s)is an element of L(,

3
dp) whenever m 4= 0 and Re s > -. Changing

the variable by putting ue we have also

A(m, ;l ;) 2rr
( + 1) s

( )x Jo 27rulny +
l,.(u,+ 1)y

x exp
l l"(u + 1)y

We then consider the inner-product [Pm(’, sl),
Pn(’, s)] in the space LZ(, d/z), where mn =/=

3
0; and Re Sl, Re s. > -. We have

[Pm ( ", $1), P,, (’, s,) (Om,n "4- Om,-n)I(SI -4- S 2)
x (4r m I)--" + rc(] m]/] n I) 1/2%-)

l]--"S(m, n ;/)B(2rcv/i mn i/] l], Oo Sl, s,.),
where Oo- arg t with w as above, and

s.-sl-1B(p, O;s, s2) y

x C 0;- (Sl + sO;y dy

1
with ol < -7r and

u
exp

p(y + y
c(p, o ;y)

(u + 1) v/u + 1

J0(v/u, +lPU lye,O+ (yeO)_])du"
To separate the variables in this integral we use
the Mellin transform of e-ajo(ab) as a function of
a> 0 (of. [1, 6.621(1)0, which involves the
hypergeometric function. Invoking the Mellin-
Barnes formula for the hypergeometric function
we are led to the expression

exp("’)](’")=
27r1 f(,) (p(y + y-1)

-1 ) L,

ddr
r(2i+2)r(i) _(1F( + 1)(1/4u" 2 sin 0 )"))+y_

where cz > 0, > 0 are small while satisfying
+ > 0. This double integral is, however, not

absolutely convergent. To gain the absolute con-

vergence we shift the contour () to (’) with a
small ’> 0. The pole at 0 contributes a
term which does not cause any trouble. We insert
the resulting expression into the integral for
C(p, O;v ;y). The triple integral thus obtained
is absolutely convergent povided Re v > 1. We
perform the u-integral first, getting

C(P, O;v;Y) R

F(2 + 2)F(r- -- 1)F(- )
F(r- )

_x) _,(( (2 sin 0 )"))x (p(+ - _. dgn,

where R is the contribution of the pole at 0.
We insert this into the integral for B(p, O;s,
s,.). The arising triple integral is absolutely con-
vergent provided Re(sx- s01< 2or which we
shall assume for a while. We arrange the order
of integration by putting the e-integral inner, the
y-integral middle, and the 7-integral outer. To
compute the inner integral we expand the factor

-1) 2)(1 (2 sin 0/(y + y into a binomial
series. The e-integral can be performed inside
this expansion; the termwise integration can be
accomplished with the aide of Barnes’ integral

formula involving four F-factors. The resulting
series converges absolutely, and the y-integral
can be performed termwise. Then we find that

F(s + s- 2)
B(p, O sx, sa)

(. p-
--0

1 (r+l
( 1 )F(v+ 1)F r + - (s + s- 1) + v

x (sin O)dr.
This integral is absolutely convergent, but the
whole expression is not absolutely convergent.
To attain the same effect as the exchange of the
order of the sum and the integral we invoke
Gauss’ representation of the hypergeometric func-
tion as an integral over the unit interval. Then
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we have an absolutely convergent double integ-
ral. The 7-integral can be taken inner, and we
get, after a change of variable,

B(p, O s, s) 8 v/Tr P-SF(s + s- 2)

2s+sF(s -)
x uS-(u + 1)1/2-s x (u + (cos 0)) 1/2(-s’)

]s_l(2pv/u+ (cos O))du.
Expressing the factor (u2+ 1)y-s as an inverse
Mellin integral, we are led to the situation where
we may appeal to an integral formula due to
Sonine [1, 6.596(1)]. This procedure yields

(2p)-sl-sF(st + s- 2)
B(p, O st, s)

2iv-F/st 1

cos 0 d,

1
where 0 < t < min[Re st, Re s.] ---if; and the

above restriction on st, s has been dropped. We
replace the ]-factor by its defining series expan-
sion, getting an absolutely convergent expression.
Thus we have

...=E
(-1)

=0 ! (p cos O)

1

L, F(e)F(s
F@ +-ff+21 v)

ld"

The factor F (0/F + - + v can be expressed

in terms of the Beta-integral of Euler. The new
sum over v is a constant multiple of the series
for cosine, and we get, after a change of variable,

2
cos(2p cos 0 cos v)

V=O ’0

1 ) (l) sin v) a-tddv.1 )F(sx

The inner integral is essentially a value of the
K-Bessel function of order st s. But we rather
appeal to the following integral formula (see [3,
Lemma 2.71):

2 sin(2zc2)F(wt + 2)F(w2 + 2)F(wa + 2)
2 rr

F((.O + O92)/-’(O9. -- (.03)/"(093 -+- (.Ol)

where the path is curved to ensure that the poles
F(oot + )F(w. + )F(oo + ) lie to the left of
the path, and those of F(wt 4- e)F(coa +
+ ) to the right, providing parameters
w are such that the path can be drawn. We put

1
wt= st-- 1, co2=s2-1,wa= 2 assuming

Re c is small. Then we are led to

8C2 F(s + s.- 2) 2 sin(2r2)A(s, s.; 2)
v=0

x cos (2p cos O cos v) K2 (2p sin v) dvd2,
0

where
A(s, s. 2) F(s- 1 + 2)F(s- 1

F(s.- 1 + 2)F(s- 1 2).
The last inner-integral is expressible in terms of
Bessel functions. In fact the formula 6.688(1) of
[11 yields, via analytic continuation,

--0 4 sin(2r2)
x (pe%J_ (pc-% L(pe%J (pc-’) ].
Collecting these we get an expression of

[Pm(" st), Pn(" s)] involving the function A.
Equating the result with the spectral decomposi-
tion of the inner-product we obtain an identity
which is exactly the same as the specialization of
the theorem with h(r) zrA(st, s; r) F(1 +
it) [-. We then put s s, s2 2, and multiply
the resulting identity by the factor

f(s 8ri g(x) (x /2) t-Sdx
with a suitable g. Further, integrating with re-
spect to s, Re s--2, we get the theorem with
h(r) being replaced by the integral

f. F(s 1 + Jr) F(s 1 Jr) (s) dsf

g(x)K2r(X)x-tdx (r R).

By virtue of the dual of the Kontrovitch-Lebedev
inversion formula (see [3, Lemma 2.10]) for the
K-Bessel transform, we see that g can be chosen
so that the last integral coincides with the
h(r) given in the theorem. This ends the proof. It
should be noted that we need actually a result on
the spectral mean square of pj(n)’s. For this see

[4] although our argument can yield the same
assertion as theirs.

Remark. From our intermediate trace for-
mula involving A one way deduce the Fourier
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expansion of the resolvent kernel of the Lapla- [2] K.-B. Gundlach: lber die Darstellung der ganzen

cian A which has similar features as Fay’s result Spitzenformen zu den ldealstufen der Hilbert-

for Fuchsian groups. A possible alternative way
to prove our theorem is to use the Zagier trans-
form of point-pair invariants in the context of
Ha. Our initial experiment indicates, however,
that this leads us to a more complicated situation
than the above.
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