On the Structure of Painlevé Transcendents with a Large Parameter. II.

By Takahiro Kawai*) and Yoshitsugu Takei**)
Research Institute for Mathematical Sciences, Kyoto University
(Communicated by Kiyosi ITô, M. J. A., Sept. 12, 1996)

§0. Introduction. The purpose of this note is to report a result on the structure of 2-parameter formal solutions of the Painleve equations with a large parameter η, which are tabulated in Table 0.1 below. The formal solutions to be considered here have been constructed in [1] by the so-called multiple-scale analysis, and the main result (Theorem 2.1) of this note asserts that any of them can be locally reduced to a 2-parameter formal solution of the first Painlevé equation $\left(P_{\mathrm{I}}\right)$; this is a natural generalization of the result on 0 -parameter solutions reported in our precedent note [3]. (See [4] for the details of the proof of the results announced in [3].)

Table 0.1. Painlevé equations with a large parameter η.
(P_{I}) $\frac{d^{2} \lambda}{d t^{2}}=\eta^{2}\left(6 \lambda^{2}+t\right)$.
($\left.P_{\mathrm{II}}\right) \frac{d^{2} \lambda}{d t^{2}}=\eta^{2}\left(2 \lambda^{3}+t \lambda+\alpha\right)$.
$\left(P_{\mathrm{II}}\right) \frac{d^{2} \lambda}{d t^{2}}=\frac{1}{\lambda}\left(\frac{d \lambda}{d t}\right)^{2}-\frac{1}{t} \frac{d \lambda}{d t}$
$+8 \eta^{2}\left[2 \alpha_{\infty} \lambda^{3}+\frac{\alpha_{\infty}^{\prime}}{t} \lambda^{2}-\frac{\alpha_{0}^{\prime}}{t}-2 \frac{\alpha_{0}}{\lambda}\right]$.
(P_{IV}) $\frac{d^{2} \lambda}{d t^{2}}=\frac{1}{2 \lambda}\left(\frac{d \lambda}{d t}\right)^{2}-\frac{2}{\lambda}$

$$
+2 \eta^{2}\left[\frac{3}{4} \lambda^{3}+2 t \lambda^{2}+\left(t^{2}+4 \alpha_{1}\right) \lambda-\frac{4 \alpha_{0}}{\lambda}\right] .
$$

$\left(P_{\mathrm{v}}\right) \frac{d^{2} \lambda}{d t^{2}}=\left(\frac{1}{2 \lambda}+\frac{1}{\lambda-1}\right)\left(\frac{d \lambda}{d t}\right)^{2}-\frac{1}{t} \frac{d \lambda}{d t}$
*) Supported in part by Grant-in-Aid for Scientific Research (B) (No. 08454029), the Japanese Ministry of Education, Science, Sports and Culture.
**) Supported in part by Grant-in-Aid for Scientific Research on Priority Areas 231 (No. 08211235) and for Encouragement of Young Scientists (No. 08740101), the Japanese Ministry of Education, Science, Sports and Culture.

$$
\begin{aligned}
& +\frac{(\lambda-1)^{2}}{t^{2}}\left(2 \lambda-\frac{1}{2 \lambda}\right)+\eta^{2} \frac{2 \lambda(\lambda-1)^{2}}{t^{2}} \\
& {\left[\left(\alpha_{0}+\alpha_{\infty}\right)-\alpha_{0} \frac{1}{\lambda^{2}}-\alpha_{2} \frac{t}{(\lambda-1)^{2}}\right.} \\
& \left.-\alpha_{1} t^{2} \frac{\lambda+1}{(\lambda-1)^{3}}\right] . \\
\left(P_{\mathrm{VI}}\right) \quad & \frac{d^{2} \lambda}{d t^{2}}=\frac{1}{2}\left(\frac{1}{\lambda}+\frac{1}{\lambda-1}+\frac{1}{\lambda-t}\right)\left(\frac{d \lambda}{d t}\right)^{2} \\
& -\left(\frac{1}{t}+\frac{1}{t-1}+\frac{1}{\lambda-t}\right) \frac{d \lambda}{d t} \\
& +\frac{2 \lambda(\lambda-1)(\lambda-t)}{t^{2}(t-1)^{2}}\left[1-\frac{\lambda^{2}-2 t \lambda+t}{4 \lambda^{2}(\lambda-1)^{2}}\right. \\
& +\eta^{2}\left\{\left(\alpha_{0}+\alpha_{1}+\alpha_{t}+\alpha_{\infty}\right)-\alpha_{0} \frac{t}{\lambda^{2}}\right. \\
& \left.\left.+\alpha_{1} \frac{t-1}{(\lambda-1)^{2}}-\alpha_{t} \frac{t(t-1)}{(\lambda-t)^{2}}\right\}\right] .
\end{aligned}
$$

The details of this note shall be published elsewhere. We sincerely thank Professor T. Aoki for the stimulating discussions with him on the subjects discussed here.
§1. A canonical Schrödinger equation (Can) near the double turning point and its isomonodromic deformation. In this note we use the same notions and notations as in [3] except that the formal solution $\lambda_{J}(J=\mathrm{I}, \mathrm{II}, \cdots \mathrm{VI})$ of $\left(P_{J}\right)$ considered in [3] and [4] is denoted by $\lambda_{J}^{(0)}$ here; in particular $\left(S L_{J}\right)$ denotes the Schrödinger equation tabulated in Table 1.2 of [4], K_{J} denotes the Hamiltonian tabulated in Table 1.3 of [4], and $S_{J, \text { odd }}$ denotes the odd part of a solution S_{J} of the Riccati equation

$$
\begin{equation*}
S_{J}^{2}+\frac{\partial S_{J}}{\partial x}=\eta^{2} Q_{J} \tag{1.1}
\end{equation*}
$$

associated with $\left(S L_{J}\right)$. (Cf. [1], Definition 2.1.) In order to save space we also refer the reader to [4] for the definition of the coefficient A_{J} of the deformation equation $\left(D_{J}\right)$ for $\left(S L_{J}\right)$, i.e.,
$\left(D_{J}\right) \quad \frac{\partial \psi}{\partial t}=A_{J} \frac{\partial \psi}{\partial t}-\frac{1}{2} \frac{\partial A_{J}}{\partial x} \psi$.

We only note that A_{J} contains the factor ($x-$ $\left.\lambda_{J}\right)^{-1}$, e.g.,

$$
\begin{aligned}
A_{J} & =\frac{1}{2\left(x-\lambda_{J}\right)}(J=\mathrm{I}, \mathrm{II}) \\
A_{\mathrm{vI}} & =\frac{\left(\lambda_{\mathrm{vI}}-t\right) x(x-1)}{t(t-1)\left(x-\lambda_{\mathrm{VI}}\right)}, \quad e t c .
\end{aligned}
$$

In what follows we substitute into (λ, ν) in the coefficients of the potential Q_{J} the $2-$ parameter solution $\left(\lambda_{J}, \nu_{J}\right)$ of the Hamiltonian system $\left(H_{J}\right)$:

$$
\left\{\begin{array}{l}
\frac{d \lambda}{d t}=\eta \frac{\partial K_{J}}{\partial \nu} \tag{1.2}\\
\frac{d \nu}{d t}=-\eta \frac{\partial K_{J}}{\partial \lambda} .
\end{array}\right.
$$

Then $\tilde{x}=\lambda_{J, 0}(t)$ is a double turning point of $\left(S L_{J}\right)$, and we can find a WKB-theoretic formal transformation
(1.3) $x=x(\tilde{x}, t, \eta)=\sum_{\substack{j>0 \\ j \neq 1}} x_{j / 2}(\tilde{x}, t, \eta) \eta^{-j / 2}$
near the double turning point $\lambda_{J, 0}(t)$ (for generic t) so that ($S L_{J}$) may be brought into the following canonical Schrödinger equation (Can). (See Theorem 3.1 of [1] for the precise statement.)
(Can) $\quad\left(-\frac{\partial^{2}}{\partial x^{2}}+\eta^{2} Q_{c a n}(x, t, \eta)\right) \psi=0$ with

$$
\begin{gather*}
Q_{c a n}=4 x^{2}+\eta^{-1} E(t, \eta)+ \tag{1.4}\\
\frac{\eta^{-3 / 2} \rho(t, \eta)}{x-\eta^{-1 / 2} \sigma(t, \eta)}+\frac{3 \eta^{-2}}{4\left(x-\eta^{-1 / 2} \sigma(t, \eta)\right)^{2}}
\end{gather*}
$$

where
(1.5)

$$
E=\rho^{2}-4 \sigma^{2}
$$

Here the parameters σ and ρ are related to (λ_{J}, ν_{J}) in the following manner:

$$
\begin{equation*}
\sigma=\eta^{1 / 2} x\left(\lambda_{J}(t, \eta), t, \eta\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho=-\frac{\eta^{1 / 2} \nu_{J}}{\frac{\partial x}{\partial \tilde{x}}\left(\lambda_{J}, t, \eta\right)}-\frac{3}{4} \eta^{-1 / 2} \frac{\frac{\partial^{2} x}{\partial \tilde{x}^{2}}\left(\lambda_{J}, t, \eta\right)}{\left(\frac{\partial x}{\partial \tilde{x}}\left(\lambda_{J}, t, \eta\right)\right)^{2}} . \tag{1.7}
\end{equation*}
$$

We now try to isomonodromically deform (Can) (in the sense of [2]), forgetting the origin (i.e., relations (1.6) and (1.7)) of the parameters ρ and σ at the moment.

Proposition 1.1. Let $A_{\text {can }}$ denote

$$
\begin{equation*}
\frac{1}{2\left(x-\eta^{-1 / 2} \sigma(t, \eta)\right)} \tag{1.8}
\end{equation*}
$$

Then the following equation

$$
\left(D_{c a n}\right) \quad \frac{\partial \psi}{\partial t}=A_{c a n} \frac{\partial \psi}{\partial x}-\frac{1}{2} \frac{\partial A_{c a n}}{\partial x} \psi
$$

is in involution with (Can) if ρ and σ satisfies the following Hamiltonian system:

$$
\left(H_{c a n}\right) \quad\left\{\begin{array}{l}
\frac{d \rho}{d t}=-4 \eta \sigma \\
\frac{d \sigma}{d t}=-\eta \rho
\end{array} .\right.
$$

Although the proof of this proposition is a straightforward one, the result plays an important role in our reasoning given below; as a solution ($\rho_{c a n}, \sigma_{c a n}$) of ($H_{c a n}$) can be readily written down explicitly as a sum of exponential functions, we can choose a formal transformation $t(\tilde{t}$, η) using the structure of ($\rho_{c a n}, \sigma_{c a n}$) so that the transformation together with the transformation $x(\tilde{x}, \tilde{t}, \eta)$ given by (1.3) may bring ($S L_{J}$) and $\left(D_{J}\right)$ simultaneously into (Can) and ($D_{c a n}$). To be more precise, we find Proposition 1.2 below by the aid of the following Lemma 1.1 and Lemma 1.2. Until the end of this section the symbols t, λ_{J} and ν_{J} in Q_{J} shall be respectively replaced by $\tilde{t}, \tilde{\lambda}_{J}$ and $\tilde{\nu}_{J}$. For the sake of clarity of notations we also use symbols $\tilde{\sigma}_{J}$ and $\tilde{\rho}_{J}$ to denote the functions σ and ρ given respectively by (1.6) and (1.7) through the transformation $x(\tilde{x}, \tilde{t}, \eta)$. In accordance with this convention we use symbols $E_{c a n}$ and \tilde{E}_{J} to denote $\rho_{c a n}^{2}-4 \sigma_{c a n}^{2}$ and $\tilde{\rho}_{J}^{2}-$ $4 \tilde{\sigma}_{J}^{2}$ respectively. In what follows we fix an open neighborhood \tilde{V} of a fixed generic point \tilde{t}_{*} in a Stokes curve for $\tilde{\lambda}_{J}^{(0)}$ emanating from a turning point \tilde{r} for $\tilde{\lambda}_{J}^{(0)}$.

Lemma 1.1. The series $E_{c a n}$ and \tilde{E}_{J} are independent of t and \tilde{t} respectively.

Lemma 1.2. There exists a formal series $t(\tilde{t}$, $\eta)=\sum_{j \geq 0} t_{j / 2}(\tilde{t}, \eta) \eta^{-j / 2}$ so that the following conditions may be satisfied:
(1.9) $t_{j / 2}(\tilde{t}, \eta)$ is holomorphic on \tilde{V},
(1.10) $\rho_{c a n}(t(\tilde{t}, \eta), \eta)=\tilde{\rho}_{J}(\tilde{t})$ and $\sigma_{c a n}(t(\tilde{t}, \eta), \eta)$ $=\tilde{\sigma}_{J}(\tilde{t})$ hold,
(1.11) $t_{0}(\tilde{t}, \eta)=\tilde{\phi}_{J}(\tilde{t}) / 2$ holds, where $\tilde{\phi}_{J}(\tilde{t})$ denotes the integral

$$
\int_{\tilde{r}}^{\tilde{\tau}} \sqrt{\frac{\partial \tilde{F}_{J}}{\partial \tilde{\lambda}}\left(\tilde{\lambda}_{J, 0}(s), s\right)} d s(\mathrm{cf.}[4], \S 2)
$$

(1.12) $t_{1 / 2}(\tilde{t}, \eta)$ identically vanishes,
(1.13) $t_{j / 2}(j \geq 2)$ has the following form:

$$
\sum_{k=0}^{j-2} s_{j-2-2 k}(\tilde{t}) e^{(j-2-2 k) \Phi_{j}(\tilde{t}) \eta}
$$

The independency of $E_{c a n}$ on t is an immediate consequence of the definition of $E_{c a n}$ and the
explicit form of ($H_{c a n}$), while the independency of \tilde{E}_{J} on \tilde{t} is based upon the following properties (cf. [1], §2 and §3):

$$
\begin{gather*}
\frac{\partial}{\partial \tilde{t}} \tilde{S}_{J, \text { odd }}=\frac{\partial}{\partial \tilde{x}}\left(\tilde{A}_{J} \tilde{S}_{J, \text { odd }}\right), \tag{1.14}\\
\oint_{\text {around }} \tilde{x}=\tilde{\lambda}_{J, 0}(\tilde{t}) \tag{1.15}\\
\tilde{S}_{J, \text { odd }} d \tilde{x}=\frac{\pi i}{2} \tilde{E}_{J} .
\end{gather*}
$$

Thanks to Lemma 1.1, we can readily require

$$
\begin{equation*}
E_{c a n}=\tilde{E}_{J} \tag{1.16}
\end{equation*}
$$

this is just a relation between the parameters contained in ($\rho_{c a n}, \sigma_{c a n}$) and those in ($\tilde{\rho}_{J}, \tilde{\sigma}_{J}$). On the other hand, the proof of Lemma 1.2 is given by the induction on j that makes full use of Lemma 1.1 and (1.16). We note that in the course of the argument $t_{j / 2}(j \geq 2$, even integer $)$ is determined modulo an additive constant, which shall be fixed later. (Cf. §2.)

Proposition 1.2. Let $\psi(x, t, \eta)$ be a WKB solution of (Can) that satisfies ($D_{\text {can }}$) also, and let $\tilde{\phi}(\tilde{x}, \tilde{t}, \eta)$ denote the following function determined by the transformation $x(\tilde{x}, \tilde{t}, \eta)$ given by (1.3) together with the transformation $t(\tilde{t}, \eta)$ given in Lemma 1.2:

$$
\begin{equation*}
\tilde{\phi}(\tilde{x}, \tilde{t}, \eta)=\left(\frac{\partial x(\tilde{x}, \tilde{t}, \eta)}{\partial \tilde{x}}\right)^{-1 / 2} \psi(x(\tilde{x}, \tilde{t}, \eta) \tag{1.17}
\end{equation*}
$$ $t(\tilde{t}, \eta), \eta)$. Then $\tilde{\phi}$ satisfies both $\left(S L_{J}\right)$ and $\left(D_{J}\right)$ near the double turning point.

The proof of this proposition is attained by verifying

$$
\begin{equation*}
\tilde{A}_{J} \frac{\partial x}{\partial \tilde{x}}-\frac{\partial x}{\partial \tilde{t}}-A_{c a n} \frac{\partial t}{\partial \tilde{t}}=0 ; \tag{1.18}
\end{equation*}
$$

as is shown in the proof of Proposition2.2 of [4], (1.18) guarantees that $\tilde{\psi}$ satisfies not only ($S L_{J}$) but also $\left(D_{J}\right)$.
§2. Local equivalence of 2 -parameter Painlevé transcendents. The purpose of this section is to state our main result (Theorem 2.1) to the effect that any 2 -parameter formal solution of $\left(P_{J}\right)(J=$ II, III, \ldots, VI) constructed in $\S 1$ of [1] can be transformed into a 2 -parameter formal solution of $\left(P_{\mathrm{I}}\right)$. The transformation is found, as in the case of 0 -parameter solutions, through the transformation of ($S L_{J}$) into $\left(S L_{\mathrm{I}}\right)$. As the analytic structure of WKB solutions of ($S L_{J}$) with 2-parameter solutions of (H_{J}) in its coefficients behaves much wilder than that of WKB solutions of ($S L_{J}$) with 0 -parameter solutions in its coefficients, a straightforward generalization of the
argument given in [4] seems to be formidably difficult; we circumvent the trouble by making explicit use of (Can) and ($D_{\text {can }}$). In what follows, we put \sim to variables and functions relevant to $\left(S L_{J}\right)$. We also use the symbol ($x_{\mathrm{I}}(x, t, \eta), t_{\mathrm{I}}(t$, $\eta))\left(\right.$ resp., $\left.\left(x_{j}(\tilde{x}, \tilde{t}, \eta), t_{J}(\tilde{t}, \eta)\right)\right)$ to denote the transformation discussed in $\S 1$ that brings $\left(S L_{1}\right)$ and $\left(D_{\mathrm{I}}\right)$ (resp., $\left(S L_{J}\right)$ and $\left(D_{J}\right)$) into (Can) and ($D_{\text {can }}$) near the double turning point.

Before stating our main result let us recall some geometric facts relating the Stokes geometry of $\left(S L_{J}\right)$ and that for $\tilde{\lambda}_{J}^{(0)}$. (See $\S 2$ of [4] for the details.) Let \tilde{t}_{*} be a point in a Stokes curve for $\tilde{\lambda}_{J}^{(0)}$ emanating from a simple turning point \tilde{r} for $\tilde{\lambda}_{J}^{(0)}$. Then, unless $\tilde{t}_{*}=\tilde{r}$, there exist a simple turning point $\tilde{a}(\tilde{t})$ and a Stokes curve $\tilde{\gamma}$ of ($S L_{J}$) such that $\tilde{\gamma}$ joins $\tilde{a}(\tilde{t})$ and the double turning point $\tilde{\lambda}_{J, 0}(\tilde{t})$. The core of our argument is the construction of a transformation that brings $\left(S L_{J}\right)$ into $\left(S L_{\mathrm{I}}\right)$ on a neighborhood of $\tilde{\gamma}$, and in stating our main result (Theorem 2.1 below), we consider the problem in this geometric setting.

Theorem 2.1. For each 2-parameter formal solution $\left(\tilde{\lambda}_{J}, \tilde{\nu}_{J}\right)$ of $\left(H_{J}\right)$ there exists a 2 -parameter formal solution $\left(\lambda_{\mathrm{I}}, \nu_{\mathrm{I}}\right)$ of $\left(H_{\mathrm{I}}\right)$ for which the follow. ing holds:

There exist a neighborhood \tilde{U} of $\tilde{\gamma}$, a neighbor. hood \tilde{V} of \tilde{t}_{*} and holomorphic functions $x_{j / 2}(\tilde{x}, \tilde{t}, \eta)$ $(j=0,1,2, \ldots)$ on $\tilde{U} \times \tilde{V}$ and $t_{j / 2}(\tilde{t}, \eta)$ on \tilde{V} which satisfy the following relations:
(i) The function t_{0} is independent of η and satisfies

$$
\begin{equation*}
\tilde{\phi}_{J}(\tilde{t})=\phi_{\mathrm{I}}\left(t_{0}(\tilde{t})\right), \tag{2.1}
\end{equation*}
$$

(ii) The function x_{0} is also independent of η and satisfies $x_{0}\left(\tilde{\lambda}_{J, 0}(\tilde{t}), \tilde{t}\right)=\lambda_{1,0}\left(t_{0}(\tilde{t})\right)$ and $x_{0}(\tilde{a}(\tilde{t}), \tilde{t})$ $=-2 \lambda_{\mathrm{I}, 0}\left(t_{0}(\tilde{t})\right)\left(=a\left(t_{0}(\tilde{t})\right)\right)$,
(iii) $\partial x_{0} / \partial \tilde{x}$ never vanishes on $\tilde{U} \times \tilde{V}$,
(iv) $x_{1 / 2}$ and $t_{1 / 2}$ vanish identically,
(v) For $x(\tilde{x}, \tilde{t}, \eta)=\sum_{j \geq 0} x_{j / 2} \eta^{-j / 2}$ and $t(\tilde{t}, \eta)=$ $\sum_{j \geq 0} t_{j / 2} \eta^{-j / 2}$, the following relations hold:
(2.2) $\quad x\left(\tilde{\lambda}_{J}(\tilde{t}, \eta), \tilde{t}, \eta\right)=\lambda_{\mathrm{I}}(t(\tilde{t}, \eta), \eta)$,

$$
\begin{align*}
& \tilde{Q}_{J}(\tilde{x}, \tilde{t}, \eta)=\left(\frac{\partial x(\tilde{x}, \tilde{t}, \eta)}{\partial \tilde{x}}\right)^{2} Q_{1}(x(\tilde{x}, \tilde{t}, \eta) \tag{2.3}\\
& t(\tilde{t}, \eta), \eta)-\frac{1}{2} \eta^{-2}\{x(\tilde{x}, \tilde{t}, \eta) ; \tilde{x}\}
\end{align*}
$$

where the 2-parameter solutions in question of $\left(H_{J}\right)$ and $\left(H_{\mathrm{I}}\right)$ are substituted into (λ, ν) in the coefficients of \tilde{Q}_{J} and Q_{I} respectively, and $\{x ; \tilde{x}\}$ denotes the Schwarzian derivative.

Note that, among others, the relation (2.2)
describes the local equivalence of the 2-parameter formal solutions $\tilde{\lambda}_{J}$ and λ_{I} of $\left(P_{J}\right)$ and $\left(P_{\mathrm{I}}\right)$.

Our strategy of the proof of Theorem 2.1 is as follows:

Near the double turning point we can choose $t_{\mathrm{I}}^{-1}\left(t_{J}(\tilde{t}, \eta), \eta\right)$ and $x_{\mathrm{I}}^{-1}\left(x_{J}(\tilde{x}, \tilde{t}, \eta), t_{J}(\tilde{t}, \eta), \eta\right)$ as $t(\tilde{t}, \eta)$ and $x(\tilde{x}, \tilde{t}, \eta)$ so that they satisfy (2.3). We cannot, however, expect $x(\tilde{x}, \tilde{t}, \eta)$ thus defined can be extended over a neighborhood of $\{\tilde{a}(\tilde{t})\} \times \tilde{V} ;$ the free constant remaining in the definition of $t_{\mathrm{I}, j / 2}(t)$ should be suitably adjusted. To find the correct $t(\tilde{t}, \eta)$, we consider

$$
\begin{equation*}
y(\tilde{x}, \tilde{t}, \eta)=\sum_{j \geq 0} y_{j / 2}(\tilde{x}, \tilde{t}, \eta) \eta^{-j / 2} \tag{2.4}
\end{equation*}
$$

which satisfies
(2.5) $\quad \tilde{S}_{J, \text { odd }}(\tilde{x}, \tilde{t}, \eta)=\frac{\partial y}{\partial \tilde{x}} S_{\mathrm{I}}(y(\tilde{x}, \tilde{t}, \eta), t(\tilde{t}, \eta), \eta)$ near the simple turning point $\tilde{x}=\tilde{a}(\tilde{t})$, and seek for the condition that makes x to coincide with y. Note that (2.5) is another way of expressing the condition (2.3) stated in terms of the potential; (2.5) is more convenient in our discussion (e.g., in showing the regular singular character of the differential equation for x near the double turning point). A crucial point in our reasoning is to consider
(2.6) $R(x, t, \eta)=\int_{-2 \lambda_{1,0}(t)}^{x} \eta^{-1} S_{\mathrm{I}, \text { odd }}(z, t, \eta) d z$.

Making full use of deformation equations, we can verify

$$
\begin{gathered}
(2.7) \quad R(x(\tilde{x}, \tilde{t}, \eta), t(\tilde{t}, \eta), \eta)-R(y(\tilde{x}, \tilde{t}, \eta) \\
t(\tilde{t}, \eta), \eta)=\sum_{j \geq 0} C_{j / 2} \eta^{-j / 2}
\end{gathered}
$$

holds for some constant $C_{j / 2}$ which is independent both of \tilde{x} and \tilde{t}. We then use an induction on j to show the following:
$(\mathscr{C})_{j}$ A correct choice of $t_{j / 2}$ entails the vanishing of $C_{j / 2}$ and the coincidence of $x_{j / 2}$ and $y_{j / 2}$.
We note that $C_{n / 2}$ automatically vanishes for an odd integer n, reflecting the instanton structure of relevant quantities.

Once we establish $(\mathscr{C})_{j}$ for any j, then we obtain the transformation $x(\tilde{x}, \tilde{t}, \eta)$ and $t(\tilde{t}, \eta)$ which satisfy (2.3) and whose coefficients are holomorphic on $\tilde{U} \times \tilde{V}$ and on \tilde{V} respectively. The proof of (2.2) can be readily given also.

Remark 2.1. The equation (2.2) implies the relation between the parameters contained in λ_{I} and those in $\tilde{\lambda}_{J}$. See $\S 4$ of [1] for some explicit computation in the case of $J=$ II. The relation should be important in our future understanding of the connection formula for the Painleve transcendents (cf. [5]).

References

[1] T. Aoki, T. Kawai, and Y. Takei: WKB analysis of Painlevé transcendents with a large parameter. II. Structure of Solutions of Differential Equations, World Scientific, pp. 1-49 (1996).
[2] M. Jimbo, T. Miwa, and K. Ueno: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. Physica D, 2, 306-352 (1981).
[3] T. Kawai, and Y. Takei: On the structure of Painlevé transcendents with a large parameter. Proc. Japan Acad., 69A, 224-229 (1993).
[4] T. Kawai, and Y. Takei: WKB analysis of Painlevé transcendents with a large parameter. I. Adv. in Math., 118, 1-33 (1996).
[5] Y. Takei: On the connection formula for the first Painlevé equation. RIMS-Kôkyûroku, no. 931, pp. 70-99 (1995).

