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Let R be a compact Riemann surface of
genus g--> 2. Then Aut(R), the automorphism
group of R, can be embedded into the mapping
class group (for its definition, see[1,Ch. 4]) or the
Teichmiller group Fg of genus g
(1) " Aut(R) c_,Fg Out+(rq(R))

Aut+ (rr (R))/Int (rr (R)).
Here, Aut+ (rr (R)) consists of the automorphisms
of rrl(R) inducing the trivial action on H2(r(R),

Recall the Hurwitz theorem, which states
that
(2) # Aut (R) <_ 84 (g 1).
If the equality holds in (2), then R is called a

Hurwitz Riemann surface and Aut(R) is called a
Hurwitz group.

Let X be the Klein curve of genus 3 defined
by the equation

x y -4- y3z -f- z3x- O.
It is well known that X is a Hurwitz Riemann
surface; G "= Aut(X) is isomorphic to PSL(F)
and has order 168.

Now let us forget about the Klein curve, and
consider an orientable compact C surface X of
genus 3. We define the canonical generators of
zr(X, b) with base point b as in the figure 1.
They satisfy the fundamental relation

(3) (C[1/1171-1) (i2121’;12 1) (30’3-10’2 1) 1.
Let , a, ; be the elements of Aut+(()
defined by
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--1 --1

(B31 aB3a2,
3(i1) O230’210102121’;

3(B> 2;2=2 -1 -Cg 3C2/22
(3(C[2) elf3 lC[11Clf;1

3(B2) a8;- -

3(I3)
(3 (ii3)

(7(I1) 1;i3212-I
() - -B2 -1233 i222 2

7(2) 2I2-II-I
7(3) 212221211121

(3) 222.
Then, we have the following:

Theorem 1. (1) The classes
Out+((X)) generate a subgroup H of F3, which is
isomorphic to PSL2()
(2) Moreover, if X is the Klein curve, then H is con-

jugate to the image of .
Outline of the proof (1) First note that H {1},
because the action of H on the homology group

H(X, is not trivial. By direct computation

using (3), we have

P2= Pa= P= 1, 23 1,
(4) (732)= [conjugation by
For example,
-2 --I --I --i --I3"3 2 22,3 2 2 )

X (11121122ll

-1 -1
2 223 2,

hence
3
@3 3 (a3a[l/lal) ([lla/l-l2231-1m-1ll)

x (Z’ -’)3
-1 -1(2 B2,3, 2’ "2)

x (2’B2l2’B32)

From (4) we obtain

(5) P2 P3 P P2P3P7 (PTP3P2)= 1
in Out+((). Since (5) is the presentation of
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PSL2(F7) (see [2, p. 96]), there is a surjective
map

PSL(F) H.
The group PSL2(F7) is simple, and the map is an
isomorphism.
(2) To see that H is the automorphism group of a
Riemann surface, it is enough to recall the
Nielsen realization problem, which was positively
solved in [3]:

Theorem of Kerckhoff. For any finite sub-
group G of Fg, there is a compact Riemann surface
R of genus g such that

G Aut(R) F.
This theorem shows that there exists a

Riemann surface R of genus 3 with H c Aut(R).
On the other hand, #Aut(R) <_ 168 # H by
the Hurwitz inequality. Consequently H
Aut(R). It is classically known (see [5, Th. 2.17])
that the Klein curve is the unique compact
Riemann surface of genus 3 such that Aut(R)
PSL2(FT). Thus we have proved Theorem 1.
Details of the proof and the geometric picture of
the automorphisms will appear somewhere else.
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