McKay Correspondence and Hilbert Schemes*)

By Yukari ITO**) and Iku NAKAMURA ***)

(Communicated by Heisuke HironAKA, M. J. A., Sept. 12, 1996)

Introduction. A particular case in the superstring theory where a finite group G acts upon the target Calabi-Yau manifold M in the theory seems to attract both physicists' and mathematician's attention from various viewpoints. In order to obtain a correct conjectural formula of the Euler number of a smooth resolution of the quotient space M / G, physicists were led to define the following orbifold Euler characteristic [2], [3]

$$
\chi(M, G)=\frac{1}{|G|} \sum_{g h=h g} \chi\left(M^{\langle g, h\rangle}\right)
$$

where the summation runs over all the pairs g, h of commuting elements of G, and $M^{\langle g, h\rangle}$ denotes the subset of M of all the points fixed by both of g and h. Then a conjecture of Vafa [2], [3] can be stated in mathematical terms as follows.

Vafa's formula-conjecture. If a complex manifold M has trivial canonical bundle and if M / G has a (nonsingular) resolution of singularities $\widetilde{M / G}$ with trivial canonical bundle, then we have $\chi(\widetilde{M / G})=\chi(M, G)$.

In the special case where $M=\boldsymbol{A}^{n}$ an n dimensional affine space, $\chi(M, G)$ turns out to be the number of conjugacy classes, or equivalently the number of equivalence classes of irreducible G-modules. If $n=2$, then the formula is therefore a corollary to the classical McKay correspondence between the set of exceptional irreducible divisors and the set of equivalence classes of irreducible G-modules [13].

If $n=3$, then the existence of the above resolution as well as Vafa's formulae is known by the efforts of mathematicians [14], [17], [12], [18], [7], [8], [9], [19]. Except in these cases Vafa's

[^0]formula is known to be true only in a few cases [6], for instance the case where G is a symmetry group S_{m} of m letters for $n=2 m$ an arbitrary even integer [5] [15]. In this case $M / G=$ $\operatorname{Symm}^{m}\left(\boldsymbol{A}^{2}\right)$ and $\overline{M / G}=\operatorname{Hilb}^{m}\left(\boldsymbol{A}^{2}\right)$ as we will see soon. A generalization of the classical McKay correspondence to an arbitrary n
is also known as an Ito-Reid (bijective) correspondence between the set of irreducible exceptional divisors in $\widetilde{M / G}$ and the set of certain conjugacy classes called junior ones [11].

In the present article we will report an interesting return-path from the case where S_{n} acts on $\boldsymbol{A}^{2 n}$ to the two dimensional case with a different G. The analysis of the case leads us to a natural explanation for the classical McKay correspondence mentioned above. We will explain this more precisely in what follows.

Let $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)\left(\simeq \operatorname{Chow}^{n}\left(\boldsymbol{A}^{2}\right)\right)$ be the n-th symmetric product of \boldsymbol{A}^{2}, that is by definition, the quotient of n-copies $\boldsymbol{A}^{2 n}$ of \boldsymbol{A}^{2} by the natural action of the symmetry group S_{n} of n letters. Let $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ be the Hilbert scheme of \boldsymbol{A}^{2} parametrizing all the 0 -dimensional subschemes of length n. By [1] [4] $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ is a smooth resolution of $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ with a holomorphic symplectic structure and trivial canonical bundle.

Let G be an arbitrary finite subgroup of $S L(2, \boldsymbol{C})$. The group G operates on \boldsymbol{A}^{2} so that it operates upon both $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ and $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ canonically. Now we consider the particular case where n is equal to the order of G. Then it is easy to see that the G-fixed point set $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ in $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ is isomorphic to the quotient space \boldsymbol{A}^{2} / G. The G-fixed point set $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ in $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ is always nonsingular, but can be disconnected and not equidimensional. There is however a unique irreducible component of $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ dominating $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$, which we denote by $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right) . \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is roughly speaking the Hilbert scheme parametrising all the G-orbits of length $|G|$. Since $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ inherits a holomorphic symplectic structure from
$\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right), \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is a smooth resolution of \boldsymbol{A}^{2} / G with trivial canonical bundle (Theorem 1.3). The structure of $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is studied in detail by using the symmetric tensor representations of the group G.

Subsequently there emerges the classical McKay correspondence.

Let \mathfrak{m} (resp. \mathfrak{m}_{s}) be the maximal ideal of the origin of \boldsymbol{A}^{2} (resp. $\left.\boldsymbol{A}^{2} / G\right)$ and let $\mathfrak{n}=\mathfrak{m}_{s} \vee \boldsymbol{A}^{\text {. }}$. Any point \mathfrak{p} of the exceptional set E of $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is a G-invariant 0 -dimensional subscheme \boldsymbol{Z} of \boldsymbol{A}^{2} with support the origin, to which we associate a G-invariant ideal subsheaf I of \mathfrak{m} defining Z. Let $V(I):=I / \mathrm{m} I+\mathrm{n}$. The finite G-module $V(I)$ is isomorphic to a minimal G-submodule of I generating the $\mathscr{O}_{A^{2}}$-module I.

If \mathfrak{p} is a smooth point of $E, V(I)$ is a nontrivial irreducible G-module. Meanwhile if \mathfrak{p} is a singular point of E, then $V(I)$ is a sum of two mutually distinct nontrivial irreducible G modules. For any nontrivial irreducible G module ρ we define a subset $E(\rho)$ of E consisting of all $I \in \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ such that $V(I)$ contains ρ as a G-submodule. We will see that $E(\rho)$ is a smooth rational curve. The map $\rho \mapsto E(\rho)$ gives a bijective correpondence (Theorem 3.1) between the set $\operatorname{Irr}(G)$ of all equivalence classes of nontrivial irreducible G-modules and the set $\operatorname{Irr}(E)$ of all irreducible components of E, which turns out to be the classical McKay correspondence [13].

1. The crepant (minimal) resolution.

Lemma 1.1. Let G be a finite group in $G L(2, \boldsymbol{C}), \operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ the subset of $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ consisting of all the points fixed by any element of G. Then $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ is nonsingular.

Lemma 1.2. Let G be a finite subgroup in $S L(2, \boldsymbol{C}), n$ the order of G and $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ the subset of Symm $^{n}\left(\boldsymbol{A}^{2}\right)$ consisting of all the points of $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ fixed by any element of G. Then $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)^{G} \simeq \boldsymbol{A}^{2} / G$.

Theorem 1.3. Let G be a finite subgroup in $S L(2, \boldsymbol{C}), n$ the order of G. Then there is a unique irreducible component $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ of $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ dominating \boldsymbol{A}^{2} / G, which is a minimal resolution of \boldsymbol{A}^{2} / G with trivial canonical line bundle.

Remark. In what follows we identify a subscheme Z and the ideal I_{Z}, so that we consider I_{Z} $\in \operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$.
2. \boldsymbol{A}_{n} case. Let \mathfrak{m} be the maximal ideal of
$\mathcal{O}_{\boldsymbol{A}^{2}}$ at the origin. Let (x, y) be a system of coordinates of \boldsymbol{A}^{2}, G a cyclic group of order $n+1$ and σ a generator of G. Let ε be a primitive $(n+1)$-th root of unity. We define the action of the generator σ upon \boldsymbol{C}^{2} by $(x, y) \mapsto(x, y) \cdot g$ $=\left(\varepsilon x, \varepsilon^{-1} y\right)$. The simple singularity of type A_{n} is the quotient of \boldsymbol{A}^{2} by the cyclic group G.

Lemma 2.1. $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is the union of the following G-invariant ideals of colength $n+1$;

$$
I(\Sigma):=\prod_{p \in \Sigma} \mathfrak{m}_{\mathfrak{p}}=\left(x^{n+1}-a^{n+1}, x y-a b\right.
$$

 where Σ is a G-orbit in \boldsymbol{A}^{2} disjoint from the origin with $\#(\Sigma)=|G|, \mathfrak{p}:=(a, b) \in \Sigma, \mathfrak{p} \neq(0,0)$, $1 \leq i \leq n$ and $\left[p_{i}, q_{i}\right] \in \mathbf{P}^{1}$.

Remark. Hilb ${ }^{G}\left(\boldsymbol{A}^{2}\right)$ is the disjoint union of the subsets in Lemma 2. 1 except that $I_{i}(0: 1)=$ $I_{i+1}(1: 0)$.

Theorem 2.2. Let a and b be the parameters of \boldsymbol{A}^{2} on which the group G acts by $g(a, b)=(\varepsilon a$, $\left.\varepsilon^{-1} b\right)$. Let $S:=\boldsymbol{A}^{2} / G, \tilde{S}$ the toric minimal resolution of S and U_{i} the affine charts of \tilde{S} defined by

$$
\boldsymbol{A}^{2} / G \simeq \operatorname{Spec} \boldsymbol{C}\left[a^{n+1}, a b, b^{n+1}\right]
$$

$U_{i}:=\operatorname{Spec} \boldsymbol{C}\left[s_{i}, t_{i}\right](1 \leq i \leq n+1)$
where we denote $s_{i}:=a^{i} / b^{n+1-i}$, and $t_{i}:=b^{n+2-i} / a^{i-1}$ under the usual notation of torus embeddings. Then the isomorphism of \tilde{S} with $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is given by (the morphism defined by the universal property of Hilb ${ }^{n}\left(\boldsymbol{A}^{2}\right)$ from) the following two-dimensional flat families of G-invariant ideals of $\mathscr{O}_{\boldsymbol{A}^{2}}(1 \leq i \leq$ $n+1$);

$$
\begin{array}{r}
\mathscr{I}_{i}\left(s_{i}, t_{i}\right):=\left(x^{i}-s_{i} y^{n+1-i}, x y-s_{i} t_{i}, y^{n+2-i}\right. \\
\left.-t_{i} x^{i-1}\right) .
\end{array}
$$

3. Main theorem. Let G be a finite subgroup of $S L(2, \boldsymbol{C})$ and $\operatorname{Irr}(G)$ the set of all equivalence classes of nontrivial irreducible G modules. Let $X=X_{G}:=\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right), S=S_{G}:=$ $\boldsymbol{A}^{2} / G, \mathfrak{m}$ (resp. \mathfrak{m}_{s}) the maximal ideal of X (resp. S) at the origin and $\mathfrak{n}:=\mathfrak{m}_{s} \mathscr{O}_{\boldsymbol{A}^{2}}$. Let $\pi: X \rightarrow S$ be the natural morphism and E the exceptional set of π. Let $\operatorname{Irr}(E)$ be the set of irreducible components of E. Any $I \in X$ contained in E is a G-invariant ideal of $\mathscr{O}_{\boldsymbol{A}^{2}}$ which contains \mathfrak{n}. First we define

Definition. $\quad V(I):=I /(\mathfrak{m} I+\mathfrak{n})$.
Definition. For any ρ, ρ^{\prime}, and $\rho^{\prime \prime} \in \operatorname{Irr}(G)$ we define

$$
\begin{array}{r}
E(\rho):=\left\{I \in \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right) ; V(I)\right. \text { contains a } \\
G \text {-module } V(\rho)\}
\end{array}
$$

$$
\begin{aligned}
& P\left(\rho, \rho^{\prime}\right):=\left\{I \in \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right) ; V(I)\right. \text { contains a } \\
&\left.G-\text { module } V(\rho) \oplus V\left(\rho^{\prime}\right)\right\} \\
& Q\left(\rho, \rho^{\prime}, \rho^{\prime \prime}\right):=\left\{I \in \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right) ; V(I)\right. \text { contains a } \\
&\left.G \text {-module } V(\rho) \oplus V\left(\rho^{\prime}\right) \oplus V\left(\rho^{\prime \prime}\right)\right\} .
\end{aligned}
$$

Definition. Two irreducible G-modules ρ and ρ^{\prime} are (McKay-) adjacent if $\rho \otimes \rho_{\text {nat }} \supset \rho^{\prime}$ or vice versa.

Definition. The McKay graph $\Gamma(\operatorname{Irr}(G))$ of $\operatorname{Irr}(G)$ is defined to be a graph whose vertices are $\operatorname{Irr}(G)$. Two vertices ρ and ρ^{\prime} of $\Gamma(\operatorname{Irr}(G))$ are connected by a single edge if and only if ρ and ρ^{\prime} are adjacent.

Then our main theorem is stated as follows.
Theorem 3.1. Let G be a finite subgroup of SL(2, C). Then
(1) the map $\rho \mapsto E(\rho)$ is a bijective corres. pondence between $\operatorname{Irr}(G)$ and $\operatorname{Irr}(E)$,
(2) $E(\rho)$ is a smooth rational curve for any $\rho \in \operatorname{Irr}(G)$,
(3) $P(\rho, \rho)=Q\left(\rho, \rho^{\prime}, \rho^{\prime \prime}\right)=\emptyset$ for any ρ, $\rho^{\prime} \rho^{\prime \prime} \in \operatorname{Irr}(G)$.
(4) $P\left(\rho, \rho^{\prime}\right) \neq \emptyset$ if and only if ρ and ρ^{\prime} are adjacent. In this case $P\left(\rho, \rho^{\prime}\right)$ is a (reduced) single point, where $E(\rho)$ and $E\left(\rho^{\prime}\right)$ intersect transversally.

Corollary 3.2. Let $\boldsymbol{Z}^{*}:=\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right) \times{ }_{s}\{0\}$ be a scheme-theoretic fiber of π at the origin. Then Z^{*} is a Cartier divisor of X with $Z^{*}=\Sigma_{\rho \in \operatorname{Irr}(G)}$ $(\operatorname{deg} \rho) E(\rho)$.

Theorem 3. 1 is proved by describing all the ideals as we have done in section two for A_{n}. The details appear in [10] for A_{n} and D_{n} and in [16] for E_{6}, E_{7} and E_{8}. By Theorem $3.1 \Gamma(\operatorname{Irr}(G))$ is the same as $\Gamma(\operatorname{Irr}(E))$, the dual graph $\Gamma(\operatorname{Irr}(E))$ of E, in other words, the Dynkin diagram of S_{G}. We note that $\sum_{\rho \in \operatorname{Irr}(G)}(\operatorname{deg} \rho) \rho$ is the highest root in the root system on $\Gamma(\operatorname{Irr}(E))$ of E.

Example. With the notation in section two, we define characters ρ_{k} of G by $\rho_{k}(g)=\varepsilon^{k}(1$ $\leq k \leq n)$ or $(k \in \boldsymbol{Z} /(n+1) \boldsymbol{Z})$. Then we see that

$$
\begin{aligned}
& V\left(I_{k}\left(p_{k}: q_{k}\right)\right) \simeq \\
& \begin{cases}\rho_{1} & \left(k=1, p_{1} \neq 0\right) \\
\rho_{1}+\rho_{2} & \left(k, p_{k}\right)=(1,0), \text { or }\left(k, q_{k}\right)=(2,0) \\
\rho_{2} & \left(k=2, p_{2} q_{2} \neq 0\right) \\
\rho_{k}+\rho_{k-1} & \left(q_{k}=0,2 \leq k \leq n\right) \\
\rho_{k} & \left(p_{k} q_{k} \neq 0\right) \\
\rho_{k}+\rho_{k+1} & \left(q_{k}=0,1 \leq k \leq n-1\right) \\
\rho_{n} & \left(k=n, q_{n} \neq 0\right.\end{cases}
\end{aligned}
$$

It follows that $E\left(\rho_{k}\right)=\left\{I_{k}\left(p_{k}: q_{k}\right) ;\left[p_{k}: q_{k}\right]\right.$
$\left.\in \boldsymbol{P}^{1}\right\}$ and $P\left(\rho_{k}, \rho_{k+1}\right)=\left\{I_{k}(0: 1)\right\}=\left\{I_{k+1}(1: 0)\right\}$. Since $\rho_{k} \otimes \rho_{\text {nat }}=\rho_{k-1}+\rho_{k-1}$, we have $\Gamma(\operatorname{Irr}(G))$ $=\Gamma(\operatorname{Irr}(E))$.

References

[1] Arnaud Beauville: Variétés Kählerienes dont la premiére classe de Chern est nulle. J. Differentail Geometry, 18, 787-829 (1983).
[2] L. Dixon, J. Harvey, C. Vafa, and E. Witten: Strings on orbifolds (I). Nucl. Phys., B 261, 678-686 (1985).
[3] L. Dixon, J. Harvey, C. Vafa, and E. Witten: Strings on orbifolds (II). Nucl. Phys., B 274, 285-314 (1986).
[4] John Fogarty: Algebraic families on algebraic surface. Amer. J. Math., 90, 511-521 (1968).
[5] L. Göttsche: The Betti numbers of Hilbert scheme of points on a smooth projective surface. Math. Ann., 286, 193-207 (1990).
[6] F. Hirzebruch and T. Höfer: On the Euler number of an orbifold. Math. Ann., 286, 255-260 (1990).
[7] Y. Ito: Crepant resolution of trihedral singularities. Proc. Japan Acad., 70A, 131-136 (1994).
[8] Y. Ito: Crepant resolution of trihedral singularities and the orbifold Euler characteristic. Intern. Jour. of Math., 6, no. 1, 33-43 (1995).
[9] Y. Ito: Gorenstein quotient singularities of monomial type in dimension three. J. Math. Sci. Univ. of Tokyo, 2, no. 2, 419-440 (1995).
[10] Y. Ito and I. Nakamura: Hilbert schemes and simple singularities A_{n} and D_{n} (1996) (preprint).
[11] Y. Ito and M. Reid: The McKay correspondence for finite subgroups of (3.C). Higher Dimensional Complex Varieties Proc. Internat. Conference, Trento, 1994, de Gruyter (1996) (alg- geom / 9411010).
[12] D. Markushevich: Resolution of $\boldsymbol{C}^{3} / H_{168}$ (1994) (preprint).
[13] J. McKay: Graphs, singularities, and finite group. in Santa Cruz, Conference on finite groups (Santa Cruz, 1979). Proc. Symp. Pure Math., AMS, 37, 183-186 (1980).
[14] D. G. Markushevich, M. A. Olshanetsky, and A. M. Perelomov: Description of a class of superstring compactifications related to semi-simple Lie algebras. Comm. Math. Phys., 111, 247-274 (1987).
[15] H. Nakajima: Heisenberg algebra and Hilbert scheme of points on projective surfaces (to appear in Ann. of Math).
[16] I. Nakamura: Hilbert schemes and simple sing. ularities E_{6}, E_{7} and E_{8} (1996) (preprint).
[17] S.-S. Roan: On the generalization of Kummer surfaces. J. Diff. Geometry, 30, 523-537 (1989).
[18] S.-S. Roan: On $c_{1}=0$ resolution of quotient singularity. Intern. Jour. of Math., 5, 523-536 (1994).
[19] S.-S. Roan: Minimal Resolution of Gorenstein Orbifolds in Dimension Three (to appear in Topology).

[^0]: *) The first author is partially supported by JSPS, the Fûjukai Foundation and Japan Association for Mathematical Sciences. The second author is partially supported by the Grant-in-aid (No. 06452001) for Scientific Research, the Ministry of Education.
 **) Department of Mathematics, Tokyo Metropolitan University.
 ***) Department of Mathematics, Hokkaido University.

