Eigenvalues of the Laplacian Under Singular Variation of Domains-the Robin Problem with Obstacle of General Shape

By Shin Ozawa
Department of Mathematics Tokyo Institute of Technology
(Communicated by Kiyoshi ITÔ, M. J. A., June 11, 1996)

1. Introduction. Let M be a bounded domain in \boldsymbol{R}^{3} with smooth boundary ∂M. Assume that $w=\{0\} \in M$. Let D be a domain with smooth boundary ∂D containing the origin $\{0\}$. Assume that $\boldsymbol{R}^{3} \backslash D$ is connected. Let D_{ε} be the set given by $D_{\varepsilon}=\left\{x \in \boldsymbol{R}^{3} ; \varepsilon^{-1} x \in D\right\}$. Let M_{ε} be the domain given by $M \backslash \overline{D_{\varepsilon}}$. Let $\mu_{j}(\varepsilon)$ be the j th eigenvalue of the Laplacian associated with the problem:

$$
\begin{array}{cc}
-\Delta u(x)=\lambda u(x) & x \in M_{\varepsilon} \tag{1.1}\\
u(x)=0 & x \in \partial M \\
k u(x)+\left(\partial / \partial \nu_{x}\right) u(x)=0 & x \in \partial D_{\varepsilon}
\end{array}
$$

where $k>0$ is a constant and $\partial / \partial \nu_{x}$ denotes the derivative along the exterior normal direction with respect to ∂M. Let μ_{j} be the j th eigenvalue of the Laplacian associated with the following problem:

$$
\begin{array}{rlrl}
-\Delta u(x) & =\lambda u(x) & x \in M \tag{1.2}\\
u(x) & =0 & x \in \partial M
\end{array}
$$

In this paper we give a sketch of the following

Theorem. Fix j. Fix an arbitrary $\tau \in(0,1)$. Assume that μ_{j} is a simple eigenvalue. Then,

$$
\mu_{j}(\varepsilon)-\mu_{j}=k|\partial D| \varepsilon^{2} \varphi_{j}(w)^{2}+O\left(\varepsilon^{2+\tau}\right)
$$

Here $\varphi_{j}(x)$ is the L^{2} normalized eigenfunction associated with μ_{j}. Here $|\partial D|$ is the surface area of ∂D.

Remark. See, for related topics to [5], Besson [1], Chavel and Feldman [2], Courtois [3], Roppongi [6].
2. Sketch of our proof of Theorem. Fix j. Let μ_{j} be a simple j th eigenvalue. Then, we can prove that $\mu_{j}(\varepsilon)$ is simple for any $0<\varepsilon<\varepsilon_{0}$. Let $\varphi_{j}(\varepsilon)$ be L^{2} normalized j th eigenfunction of $-\Delta$ associated with $\mu_{j}(\varepsilon)$. Let $d \sigma_{x}$ be two dimensional surface measure and ∇_{t} be a tangential gradient on the tangent space $T\left(\partial D_{\varepsilon}\right)$ at $x \in$ ∂D_{ε}. Let H_{1} be the first mean curvature with respect to inner normal vector at ∂D_{ε}. We have the following Hadamard's variational formula. See
[4].
(2.1) $\mu_{j}^{\prime}(\varepsilon)$

$$
\begin{aligned}
= & \int_{\partial D_{\varepsilon}}\left(-\left|\nabla_{t} \varphi_{j}(\varepsilon)\right|^{2}+\mu_{j}(\varepsilon) \varphi_{j}(\varepsilon)^{2}\right. \\
& \left.+\left(k^{2}+k(n-1) H_{1}\right) \varphi_{j}(\varepsilon)^{2}\right)\left(\nu_{x} \cdot n_{x}\right) d \sigma_{x}
\end{aligned}
$$

where n_{x} is the unit vector along $\overrightarrow{w x}$ direction and $\left(\nu_{x} \cdot n_{x}\right)$ is the inner product.
To prove the Theorem we use the relation

$$
\mu_{j}(\varepsilon)-\mu_{j}=\int_{o}^{\varepsilon} \mu_{j}^{\prime}(s) d s
$$

where μ_{j} is a simple eigenvalue.
We need to examine the properties of $\varphi_{j}(\varepsilon)$, $\nabla_{t} \varphi_{j}(\varepsilon)$ for small $\varepsilon>0$ to obtain Theorem observing (2.1).

We can prove the following
Lemma 2.1. Fix any positive number θ. Assume that μ_{j} is simple. Then,

$$
\max _{\bar{M}_{\varepsilon}}\left|\varphi_{j}(\varepsilon)-\varphi_{j}\right|=O\left(\varepsilon^{1-\theta}\right)
$$

is valid, if we take $\varphi_{j}(\varepsilon)$ such that

$$
\int_{M_{\varepsilon}} \varphi_{j}(\varepsilon)(x) \varphi_{j}(x) d x>0
$$

We also have the following
Lemma 2.2. We have

$$
\int_{\partial D_{\varepsilon}}\left|\nabla_{t} \varphi_{j}(\varepsilon)(x)\right|^{2} d \sigma_{x}=O\left(\varepsilon^{2}\right)
$$

Then,

$$
\begin{aligned}
\mu_{j}^{\prime}(\varepsilon)= & O\left(\varepsilon^{2}\right)+\int_{\partial D_{\varepsilon}} k(n-1) H_{1} \varphi_{j}(\varepsilon)^{2}\left(\nu_{x} \cdot n_{x}\right) d \sigma_{x} \\
= & O\left(\varepsilon^{2}\right)+\int_{\partial D_{\varepsilon}} k(n-1) H_{1} \varphi_{j}^{2}\left(\nu_{x} \cdot n_{x}\right) d \sigma_{x} \\
& \quad+O\left(\varepsilon^{2}\right) O\left(\varepsilon^{-1}\right) O\left(\varepsilon^{1-\theta}\right) \\
= & O\left(\varepsilon^{2-\theta}\right)+k(n-1) \\
& \quad\left(\int_{\partial D_{\varepsilon}} H_{1}\left(\nu_{x} \cdot n_{x}\right) d \sigma_{x}\right) \varphi_{j}(w)^{2}
\end{aligned}
$$

for any $\theta>0$. Therefore,

$$
\begin{aligned}
\mu_{j}(\varepsilon) & =\mu_{j}+O\left(\varepsilon^{3-\theta}\right)+k \int_{o}^{\varepsilon}\left(\frac{d}{d s}\left|\partial D_{s}\right|\right) \varphi_{j}(w)^{2} d s \\
& =\mu_{j}+k|\partial D| \varepsilon^{2} \varphi_{j}(w)^{2}+O\left(\varepsilon^{3-\theta}\right)
\end{aligned}
$$

We can prove Theorem by using Lemma 2.1
and 2.2 .
3. On Lemma 2.1. To prove Lemma 2.1 we need some steps. Let $G(x, y)$ be Green's fuction of $-\Delta$ associated with (1.2). Let $G_{\varepsilon}(x, y)$ be Green's function of $-\Delta$ which satisfy boundary conditions:
$G_{\varepsilon}(x, y)=0 \quad x \in \partial M, y \in M_{\varepsilon}$
$k G_{\varepsilon}(x, y)+\left(\partial / \partial \nu_{x}\right) G_{\varepsilon}(x, y)=0, \quad x \in \partial D_{\varepsilon}$, $y \in M_{\varepsilon}$.
We put

$$
\begin{aligned}
\boldsymbol{G} f(x) & =\int_{M} G(x, y) f(y) d y \\
\boldsymbol{G}_{\varepsilon} f(x) & =\int_{M_{\varepsilon}} G_{\varepsilon}(x, y) g(y) d y
\end{aligned}
$$

We have the following Lemma
Lemma 3.1. We have

$$
\left\|\varphi_{j}(\varepsilon)\right\|_{L^{(}\left(M_{\varepsilon}\right)}=O(1)
$$

Lemma 3.1 can be obtained by the relation $\varphi_{j}(\varepsilon)=\mu_{j}(\varepsilon) \boldsymbol{G}_{\varepsilon} \varphi_{j}(\varepsilon)$

Proof of Lemma 3.2. We put

$$
u=\left(\boldsymbol{G}_{\varepsilon}-\boldsymbol{G} \chi\right) \varphi_{j}(\varepsilon)
$$

Then,

$$
\begin{array}{rl}
\Delta u(x)=0 & x \in M_{\varepsilon} \\
u(x)=0 & x \in \partial M
\end{array}
$$

and $k u(x)+\left(\partial / \partial \nu_{x}\right) u(x)=\beta(x) \quad x \in \partial D_{\varepsilon}$, where

$$
\beta(x)=-k G \chi \varphi_{j}(\varepsilon)(x)-\left(\partial / \partial \nu_{x}\right) G \chi \varphi_{j}(x)
$$

Here χ is the characteristic function of M_{ε}. Then, $\beta(x)=O(1)$. And we get Lemma 3.2 by the Green formula.

Lemma 3.3. We have

$$
\left\|\left(\boldsymbol{G}_{\varepsilon}-\mu_{j}^{-1}\right) \chi \varphi_{j}\right\|_{L^{2}\left(M_{\varepsilon}\right)}=O(\varepsilon)
$$

Proof of Lemma 2.1. We have the eigenfunction expansion

$$
\boldsymbol{G}_{\varepsilon} f=\sum_{k=1}^{\infty} \mu_{k}(\varepsilon)^{-1}\left(\varphi_{k}(\varepsilon), f\right) \varphi_{k}(\varepsilon)
$$

where $($,$) is the inner product on L^{2}\left(M_{\varepsilon}\right)$.
Then,

$$
\left\|\left(\boldsymbol{G}_{\varepsilon}-\mu_{j}^{-1}\right) \chi \varphi_{j}\right\|_{L^{2}\left(M_{\varepsilon}\right)}^{2}=O\left(\varepsilon^{2}\right)
$$

implies

$$
\sum_{k=1, k \neq j}^{\infty}\left(\varphi_{k}(\varepsilon), \chi \varphi_{j}\right)^{2}=O\left(\varepsilon^{2}\right) .
$$

Therefore,
(3.1) $\left\|\chi \varphi_{j}-\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right) \varphi_{i}(\varepsilon)\right\|_{L^{2}\left(M_{\epsilon}\right)}=O(\varepsilon)$.

We know that

$$
\int_{M_{\varepsilon}} \varphi_{j}(x)^{2} d x=1+O\left(\varepsilon^{3}\right)
$$

By taking a square of (3.1) we have

$$
\left\|\chi \varphi_{j}\right\|_{L^{2}\left(M_{\varepsilon}\right)}^{2}-\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right)^{2}=O\left(\varepsilon^{2}\right)
$$

Therefore,

$$
\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right)^{2}=1+O\left(\varepsilon^{2}\right)
$$

Then,

$$
\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right)=\operatorname{sgn}\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right)\left(1+O\left(\varepsilon^{2}\right)\right)
$$

We have

$$
\begin{aligned}
\varphi_{j}(\varepsilon)= & \left(\mu_{j}(\varepsilon)-\mu_{j}\right) \boldsymbol{G}_{\varepsilon} \varphi_{j}(\varepsilon) \\
& +\mu_{j}\left(\boldsymbol{G}_{\varepsilon}-\boldsymbol{G} \chi\right) \varphi_{j}(\varepsilon) \\
& +\mu_{j} \boldsymbol{G} \chi\left(\varphi_{j}(\varepsilon)-\operatorname{sgn}\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right) \chi \varphi_{j}\right) \\
& +\operatorname{sgn}\left(\varphi_{j}(\varepsilon), \chi \varphi_{j}\right) \mu_{j} \boldsymbol{G} \chi \varphi_{j} .
\end{aligned}
$$

Then, we can get Lemma 2.1.

References

[1] G. Besson: Comportement asymptotique des valeurs propres du laplacien dans un domaine avec un trou. Bull. Soc. Math. France, 113, 211-237 (1985).
[2] I. Chavel and E. A. Feldman: Spectra of domains less a small domain. Duke Math. J., 56, 399414 (1988).
[3] G. Courtois: Spectrum of manifold with holes, J. of Funct. Anal., 134, 194-221 (1995).
[4] D. Fujiwara and S. Ozawa: Hadamard's variational formula for the Green function of some normal elliptic boundary problems. Proc. Japan Acad, 54A, 215-220 (1978).
[5] S. Ozawa: Spectra of the Laplacian with small Robin conditional boundary. Proc. Japan Acad., 72A, 53-54 (1996).
[6] S. Roppongi: Asymptotics of eigenvalues of the Laplacian with small spherical Robin boundary. Osaka J. Math., 30, 783-811 (1993).

