The Schur Indices of the Cuspidal Unipotent Characters of the Finite Unitary Groups

By Zyozyu OHMORI
Iwamizawa College, Hokkido University of Education
(Communicated by Shokichi IYANAGA, M. J. A., June 11, 1996)

Let \boldsymbol{F}_{q} be a finte field with q elements of characteristic p. Let G be a connected, reductive algebraic group, defind over \boldsymbol{F}_{q}, of type $\left({ }^{2} A_{n-1}\right)$, $n \geqq 2$, and let $F: G \rightarrow G$ be the corresponding Frobenius endomorphism of G. Let G^{F} be the group of F-fixed points of G. According to G. Lusztig [7], G^{F} has a cuspidal unipotent character if and only if $n=s(s+1) / 2$ for some natural number s, in which case such a character is unique. In the following, if χ is a complex irreducible character of a finite group and E is a field of characteristic 0 , then $m_{E}(\chi)$ denotes the Schur index of χ with respect to E. The purpose of this paper is to prove the following theorem:

Theorem. Assume that $n=s(s+1) / 2$ for some natural number s. Let ρ be the unique cuspidal unipotent character of G^{F}. Let $r=[s(s+$ 1) /4] (the integral part of $s(s+1) / 4$). Then, if r is even, we have $m_{Q}(\rho)=1$, and if r is odd, we have $m_{\boldsymbol{R}}(\rho)=m_{\boldsymbol{Q}_{\rho}}(\rho)=2$ and $m_{\boldsymbol{Q}_{l}}(\rho)=1$ for any prime number $l \neq p$.

For $n=3,6$, the theorem has been proved by Lusztig [6, Proposition (7.6)]. Our proof below is on the same lines as his method.

The unipotent characters of G^{F} can be naturally parametrized by the irreducible characters of the symmetric group S_{n} (see below) and the latter can be parametrized by the partitions of n (see, e.g. [5]). Using the deformation theory of Howlett and Lehrer [3, cf. Th. (5.9)] and a result of Benson and Curtis [1] as well as that of Lusztig [8, pp. 33-5] and reasoning like on [10, p. 297], we get (cf. [7]):

Corollary. Let $\rho=\rho_{\alpha}$ be the unipotent character of G^{F} corresponding to a partition α of n. Let $n^{\prime}=$ the number of squares in the Young diagram of α which have an odd hook length minus the number of squares which have an even hook length. Then we have $m_{\boldsymbol{Q}}(\rho)=1$ if $\left[n^{\prime} / 2\right]$ is even. If [$n^{\prime} / 2$] is odd, then we have $m_{\boldsymbol{R}}(\rho)$ $=m_{\boldsymbol{Q}_{\rho}}(\rho)=2$ and $m_{\boldsymbol{Q}_{\boldsymbol{l}}}(\rho)=1$ for any prime
number $l \neq p$.
Using this corollary, we can determine the rationality of the generalized Gelfand-Graev representations of $U_{n}\left(\boldsymbol{F}_{q}\right)$ (Kawanaka [4]) when $p=$ 2 (see [11]).

Proof of the theorem. Let G and F be as above. Let B^{*} and T^{*} be respectively an F-stable Borel subgroup of G and an F-stable maximal torus of B^{*}. Let $W=N_{G}\left(T^{*}\right) / T^{*}$ be the Weyl group of G with respect to T^{*}. Let $l()$ be the length function on W with respect to the simple reflections in W determined by B^{*}. For an element w of W, let $X(w)$ be the variety of all Borel subgroups B of G such that B and $F B$ are in relative position w (see [2]). G^{F} acts on $X(w)$ by conjugation. Let l be a fixed prime number $\neq p$, and let $\overline{\boldsymbol{Q}}_{l}$ be an algebraic closure of \boldsymbol{Q}_{l}. Then, for $w \in W$, we define a virtual module R_{w} of G^{F} over $\overline{\boldsymbol{Q}}_{l}$ by

$$
R_{w}=\sum_{i=0}^{2 l(w)}(-1)^{i} H_{c}^{i}\left(X(w), \overline{\boldsymbol{Q}}_{l}\right),
$$

which we regard as a generalized character of G^{F} with values in $\overline{\boldsymbol{Q}}_{l}$ (Deligne-Lusztig [2]). Let w_{0} be the longest element of $W=S_{n}$. For each irreducible character χ of W, set

$$
\rho_{\chi}=\frac{1}{|W|} \sum_{w \in W} \chi\left(w w_{0}\right) R_{w} .
$$

Then $\pm \rho_{\chi}$ are precisely the mutually different unipotent characters of G^{F} (Lusztig-Srinivasan [9]). If $n=s(s+1) / 2$ and if χ is the irreducible character of S_{n} corresponding to the partition $(s, s-1, s-2, \ldots, 3,2,1)$ of n, then $\pm \rho_{\chi}$ is the cuspidal unipotent character of G^{F} ([7]).

Let χ be an irreducible character of S_{n}. Then there is an element $w \in W$ such that $X(w)= \pm 1$. [In fact, let Γ be the regular graph of the partition of n corresponding to χ. For $i \geqq$ 1 , let n_{i} be the number defined as (the number of nodes in the i-th row of Γ) + (the number of nodes in the i-th colum of $\Gamma)-2 i+1$. Then, by Theorem II of [5], we see that $\chi(w)= \pm 1$,
where w is an element of W contained in the class of W corresponding to the partition (n_{1}, n_{2}, n_{3}, \ldots) of n.]

Let $\rho= \pm \rho_{\chi}$ be the unipotent character of G^{F} corresponding to an irreducible character χ of S_{n}. Then we have $\left(R_{w}, \rho\right)_{G^{F}}= \pm \chi\left(w w_{0}\right)=$ ± 1 for some element $w \in W$. We fix such an element w. The G^{F}-action on $H_{c}^{i}\left(X(w), \overline{\boldsymbol{Q}}_{l}\right)=$ $H_{c}^{i}\left(X(w), \boldsymbol{Q}_{l}\right) \otimes_{\boldsymbol{Q}} \overline{\boldsymbol{Q}}_{l}$ is induced by the $G^{F}-$ action on $H_{c}^{i}\left(X(w), \boldsymbol{Q}_{l}\right)$. Therefore each $\overline{\boldsymbol{Q}}_{l}\left[G^{F}\right]-$ module $H_{c}^{i}=H_{c}^{i}\left(X(w), \overline{\boldsymbol{Q}}_{l}\right)$ is defined over \boldsymbol{Q}_{l}. Therefore, by the property of the Schur index, we have $m_{\boldsymbol{Q}_{\boldsymbol{L}}}(\rho) \mid\left(H_{c}^{i}, \rho\right)_{G^{F}}$ for each i. Therefore we have $m_{\boldsymbol{Q}}(\rho)=1$.

As each R_{w} is integral-valued, ρ is \boldsymbol{Q} valued. Therefore, as l is any prime number $\neq p$, by Hasses's sum formula, we must have $m_{\boldsymbol{R}}(\rho)=m_{\boldsymbol{Q}_{\boldsymbol{p}}}(\rho)$. Let us determine $m_{\boldsymbol{R}}(\rho)$. As ρ is \boldsymbol{Q}-valued, by a theorem of Frobenius-Schur (see Serre [12]), there is a simple $\mathbf{C}\left[G^{F}\right]$-module V_{0} which affords ρ, with G^{F}-equivariant nondegenerate bilinear form f_{0} with values in \mathbf{C}; we have $m_{\boldsymbol{R}}(\rho)=1$ (resp. 2) if f_{0} is symmetric (resp. anti-symmetric). Let us find such a module V_{0}. In the following, we shall follow the argument of Lusztig in [8, pp. 25-26].

For any sequence $\underline{s}=\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ of simple reflections in W, let $X(\underline{s})$ be the variety of all sequences ($B_{0}, B_{1}, \ldots, B_{k}$) of Borel subgroups of G such that B_{i-1} and B_{i} are in relative position s_{i} for $1 \leqq i \leqq k$ and $F B_{k}=B_{0}$. Then G^{F} acts on $X(\underline{s})$ by conjugation on each factor, hence we can consider a virtual module $R_{\underline{s}}=\sum$ (1) ${ }^{i} H_{c}^{i}\left(X(\underline{s}), \overline{\boldsymbol{Q}}_{l}\right)$. Let \underline{s} be a sequence ${ }^{\boldsymbol{z}}$ with ${ }^{i}$ minimum possible k such that $\left(R_{\underline{s}}, \rho\right)_{G^{F}}$ is odd. Then, by the argument similar to that in [8, p. 25 line $26-$ p. 26 line 4], we see that $l\left(w^{\prime}\right)=k$ where $w^{\prime}=s_{1} s_{2} \cdots s_{k}$. Thus the correspondence (B_{0}, $\left.B_{1}, \ldots, B_{k}\right) \rightarrow\left(B_{0}, B_{k}\right)$ defines an isomorphism of $X(\underline{s})$ with $X\left(w^{\prime}\right)$ (by Bruhat decomposition). Let \bar{X} be the projective variety consisting of all sequences ($B_{0}, B_{1}, \ldots, B_{k}$) of Borel subgroups of G such that, for $1 \leqq i \leqq k, B_{i-1}$ and B_{i} are in relative position s_{i} or e (the unit of W) and that $F B_{k}=B_{0}$. Then \bar{X} is smooth of pure dimension $k, X\left(w^{\prime}\right)=X(\underline{s})$ is an open subvariety of \bar{X}, and the complement $\bar{X}-X(\underline{s})$ is the disjoint union of locally closed subvarieties $X(\underline{\tilde{s}})$, where $\underline{\tilde{s}}$ runs over certain subsequences of \underline{s} other than \underline{s} (Deligne-Lusztig [2]). The inclusions $X\left(w^{\prime}\right)$
$\hookrightarrow \bar{X} \hookleftarrow \bar{X}-X\left(w^{\prime}\right)$ give rise to a long exact sequence of cohomologies, and using the ones arising from the locally closed disjoint union $\bar{X}-X\left(w^{\prime}\right)=\amalg X(\underline{\tilde{s}})$, we get

$$
\bar{R}=\sum_{i=0}^{2 k}(-1)^{i} H^{i}\left(\bar{X}, \overline{\boldsymbol{Q}}_{i}\right)=R_{w},+\sum_{\tilde{\mathcal{z}}} R_{\tilde{\mathfrak{z}}},
$$

where in the right hand side of the second equality, the sum is taken over certain subsequences $\underline{\tilde{\tilde{s}}}$ of \underline{s} other than \underline{s}. (As before l is any fixed prime number $\neq p$.) By the assumption on $\underline{s},\left(R_{\underline{\underline{s}}}, \rho\right)_{G^{F}}$ is even for each such subsequence $\underline{\tilde{s}}$ of \underline{s}, hence ($\bar{R}, \rho)_{G^{F}}$ must be odd. As ρ is selfdual, by the Poincare duality of etale cohomology, we see that, for each $i>0,\left(H^{i}\left(\bar{X}, \overline{\boldsymbol{Q}}_{i}\right), \rho\right)_{G^{F}}=\left(H^{2 k-i}\left(\bar{X}, \overline{\boldsymbol{Q}}_{i}\right)\right.$, $\rho)_{G^{\text {F }}}$. Therefore, we conclude that $\left(H^{k}\left(\bar{X}, \overline{\boldsymbol{Q}}_{I}\right)\right.$, $\rho)_{G^{F}}$ is odd. Let V be the ρ-isotropic part of $H^{k}\left(\bar{X}, \overline{\boldsymbol{Q}}_{l}\right)$. Then the Poincare duality on $H^{k}(\bar{X}$, $\overline{\boldsymbol{Q}}_{i}$) induces on V a nondegenerate bilinear mapping f with values in $\overline{\boldsymbol{Q}}_{l} . f$ is compatible with the action of $G^{F} . f$ is symmetric (resp. antisymmetric) if k is even (resp. odd).

Let us show that there is a simple submodule V_{0} of V such that The restriction of f to V_{0} is nondegenerate. In fact, suppose, on the contrary, that no such submodules exist. Then, for any simple submodule V^{\prime} of V, we must have $V^{\prime} \subset$ $V^{\prime \perp}$, where $V^{\prime \perp}=\{y \in V \mid f(x, y)=0$ for all x $\in V^{\prime}$]. [We note that, as ρ is selfdual, Hom (V^{\prime}, $\overline{\boldsymbol{Q}}_{i}$) is isomorphic to V^{\prime} as G^{F}-module.] For any submodule V^{\prime} of V, let m^{\prime} be the multiplicity of ρ in V^{\prime}. Let V^{\prime} be a submodule of V with minimum possible odd m^{\prime} such that the restriction f^{\prime} of f to V^{\prime} is nondegenerate. Let V_{1} be a simple submodule of V^{\prime}. As f^{\prime} is nondegenerate, we have $\operatorname{dim}_{\bar{Q}_{1}} V_{1}^{\perp}+\operatorname{dim}_{\bar{Q}_{i}} V_{1}=\operatorname{dim}_{\bar{Q}_{1}} V^{\prime}$, where V_{1}^{\perp} is the subspace of V^{\prime} which is orthogonal to V_{1} with respect to $f^{\prime} . V_{1}^{\perp}$ is G^{F}-stable. As V^{\prime} is a semisimple $\overline{\boldsymbol{Q}}_{l}\left[G^{F}\right]$-module, there is a submodule V_{2} of V^{\prime} such that $V^{\prime}=V_{1}^{\perp} \oplus V_{2} . V_{2}$ is simple since $\operatorname{dim}_{\bar{Q},}, V_{2}=\operatorname{dim}_{\overline{\boldsymbol{Q}},} V_{1}$. We note that $V_{1} \subset V_{1}{ }^{1}$. We see that $V_{1}^{\perp}=V_{1} \oplus M$, where $M=V_{1}^{\perp} \cap V_{2}^{\perp}=$ $\left(V_{1} \oplus V_{2}\right)^{\perp}$, and this is an orthogonal decomposition of V_{1}^{1}. It is easy to see that the restriction of f^{\prime} to M is nondegenerate. But, as $(M, \rho)_{G^{F}}=m^{\prime}$ -2 is odd, this contradicts to the minimality of m^{\prime}.

Let V_{0} be a simple submodule of V such that the restriction f_{0} of f to V_{0} is nondegenerate. As $\overline{\boldsymbol{Q}}_{l}$ is isomorphic to \boldsymbol{C}, we may regard f_{0} as a form with values in \boldsymbol{C}. Therefore, by the theorem
of Frobenius-Schur, we have $m_{\boldsymbol{R}}(\rho)=1$ (resp. $m_{\boldsymbol{R}}(\rho)=2$) if k is even (resp. odd). Suppose that $n=s(s+1) / 2$, and that ρ is cuspidal. Then $r=[s(s+1) / 4]=[n / 2]$ is equal to the semisimple \boldsymbol{F}_{q}-rank of G. As ρ is cuspidal and $\left(\boldsymbol{R}_{w^{\prime}}\right.$, $\rho)_{G^{F}} \neq 0$, we must have $(-1)^{k}=(-1)^{r}$. This completes the proof of the theorem.

References

[1] C. T. Benson and C. W. Curtis: On the degrees and rationality of certain characters of finite Chevalley groups. Trans. Amer. Math. Soc., 165, 251-273 (1972).
[2] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields. Ann. of Math., 103, 103-162 (1976).
[3] R. B. Howlett and G. I. Lehrer: Representations of generic algebras and finite groups of Lie type. Trans. Amer. Math. Soc., 280, 753-779 (1983).
[4] N. Kawanaka: Generalized Gelfand-Graev representations and Ennola duality. Algebraic Groups and Related Topics. Advanced Studies in Pure Math. vol. 6, Tokyo, Kinokuniya; AmsterdamNew York-Oxford, North-Holland, pp. 175-206
(1985).
[5] D. E. Littlewood: The Theory of Group Characters and Matric Representations of Groups. 2nd ed., Oxford (1950).
[6] G. Lusztig: Coxeter orbits and eigenspaces of Frobenius. Invent. Math., 38, 101-159 (1976).
[7] G. Lusztig: Irreducible representations of finite classical groups. Invent. Math., 43, 125-175 (1977).
[8] G. Lusztig: Representations of Finite Chevalley Groups. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 39, Amer. Math. Soc. (1977).
[9] G. Lusztig and B. Srinivasan: The characters of the finite unitary groups. J. Algebra., 49, 168-171 (1977).
[10] Z. Ohmori: On the existence of characters of the Schur index 2 of the simple Steinberg groups of type $\left({ }^{2} E_{6}\right)$. Proc. Japan Acad., 69A, 296-298 (1993).
[11] Z. Ohmori: On the Schur indices of the finite unitary groups II (preprint).
[12] J.-P. Serre: Représentations Linéaires des Groupes Finis. 2nd ed. , Hermann, Paris (1971).

