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Let Fq be a finte field with q elements of number :/: p.
characteristic p. Let G be a connected, reductive Using this corollary, we can determine the
algebraic group, defind over Fq, of type (2An_l), rationality of the generalized Gelfand-Graev rep-
n

_
2, and let F :G G be the corresponding resentations of Un(Fq) (Kawanaka [4]) when p

Frobenius endomorphism of G. Let GF be the 2 (see [11]).
group of F-fixed points of G. According to G. Proof of the theorem. Let G and F be as
Lusztig [7], GF

has a cuspidal unipotent charac- above. Let B* and T* be respectively an
ter if and only if n s(s 1)/2 for some natu- F-stable Borel subgroup of G and an F-stable
ral number s, in which case such a character is maximal torus of B*. Let W- N(T*)/T* be
unique. In the following, if y- is a complex irre- the Weyl group of G with respect to T*. Let
ducible character of a finite group and E is a l( ) be the length function on W with respect to
field of characteristic 0, then mE(y,) denotes the the simple reflections in W determined by B*.
Schur index of y- with respect to E. The purpose For an element w of W, let X(w) be the variety
of this paper is to prove the following theorem: of all Borel subgroups B of G such that B and

Theorem. Assume that n s(s 4- 1)/2 for FB are in relative position w (see [2]). G acts on
some natural number s. Let p be the unique cus- X(,w) by conjugation. Let l be a fixed prime num-
pidal unipotent character of GF. Let r-- [s(s bet p, and let t be an algebraic closure of Qt.
1)/4] (the integral part of s(s 4- 1)/4). Then, if Then, for w W, we define a virtual module Rw

r is even, we have mq(p) 1, and if r is odd, of G over by
21(w)we have mR(p mQp(p): 2 and mQ(p)--1 Rw (--1)iHc(X(w), Ol),

for any prime number l q: p. i=0

For n 3, 6, the theorem has been proved which we regard as a generalized character of
by Lusztig [6, Proposition (7.6)]. Our proof below Gr

with values in ( (Deligne-Lusztig [2]). Let w0
is on the same lines as his method, be the longest element of W Sn. For each irre-

The unipotent characters of GF
can be ducible character X of W, set

naturally parametrized by the irreducible charac-
ters of the symmetric group Sn (see below) and Pz /WI x(WWo)R ,
the latter can be parametrized by the partitions Then --.+ Px are precisely the mutually different
of n (see, e.g. [5]). Using the deformation theory unipotent characters of G (Lusztig-Srinivasan
of Howlett and Lehrer [3, cf. Th. (5.9)] and a re- [9]). If n s(s + 1)/2 and if y- is the irreduci-
suit of Benson and Curtis [1] as well as that of ble character of Sn corresponding to the partition
Lusztig [8, pp. 33-5] and reasoning like on [10, (s, s- 1, s- 2,..., 3, 2, 1) of n, then ---+ Pz is
p. 297], we get (cf. [7])" the cuspidal unipotent character of G ([7]).

Corollary. Let p pa be the unipotent Let X be an irreducible character of Sn.

character of G corresponding to a partition ce of Then there is an element w W such that
n. Let n’ the number of squares in the Young X(w) -+- 1. [In fact, let/" be the regular graph
diagram of ce which have an odd hook length of the partition of n corresponding to y-. For
minus the number of squares which have an even 1, let n be the number defined as (the number of
hook length. Then we have mq(p)= 1 if In’/2] nodes in the i-th row of /’)+ (the number of
is even. If [n’/2] is odd, then we have mR(p) nodes in the i-th colum of F) 2i + 1. Then, by

rnp(p)= 2 and rnt(p)= 1 for any prime Theorem ]] of [5], we see that y.(w)= +---1,
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where w is an element of W contained in the
class of W corresponding to the partition (nl,
n,...) of n.]

Let p-- --+- Px be the unipotent character of
Gv

corresponding to an irreducible character
of Sn. Then we have (R,o, p) +---Z(WWo)=
---+ i for some element w W. We fix such an
element w. The GF-action on Hc(X(w), 0)--
Hc(X(w), Q)(Q0I is induced by the GF-
action on Hc (X(w), Q). Therefore each Q[Gv]
module Hc--Hc(X(w), Ol)is defined over Q.
Therefore, by the property of the Schur index,
we have mQ,(p) l(Hc, p)ae for each i. Therefore
we have m,(p) 1.

As each Rw is integral-valued, p is
valued. Therefore, as 1 is any prime number p,
by Hasses’s sum formula, we must have

mR(P) mp(p). Let us determine mR(p). As p
is Q-valued, by a theorem of Frobenius-Schur
(see Serre [12]), there is a simple C[GV]-module
Vo which affords p, with GV-equivariant non-
degenerate bilinear form fo with values in C; we
have m(p)= 1 (resp. 2) if fo is symmetric
(resp. anti-symmetric). Let us find such a module
Vo. In the following, we shall follow the argument
of Lusztig in [8, pp. 25-26].

For any sequence s (sl, s2,..., sk) of sim-
ple reflections in W, let X(s) be the variety of all
sequences (Bo, B,..., Bk) of Borel subgroups
of G such that Bi_ and Bi are in relative posi-
tion s for i

_
i_ k and FBk = Bo. Then Gv

acts on X(_s) by conjugation on each factor, hence
we can consider a virtual module Rs (-
1)Hc(X(s), 0). Let s be a sequence withmini
mum possible k such that (Rs, p)a is odd. Then,
by the argument similar to that in [8, p. 25 line
26 --p. 26 line 4], we see that l(w’) k where
w"= ss2" "s. Thus the correspondence (Bo,
B,..., B)--* (B0, B) defines .n isomorphism
of X(s)with X(w’)(by Bruhat decomposition).
Let X be the projective variety consisting of all
sequences (Bo, B1,..., B,) of Borel subgroups
of G such that, for 1

_
i

_
k, B_ and B are in

relative position si or e (the unit of W) and that

FBk Bo. Then X is smooth of pure dimension
k, X(w’) X(s) is an open subvariety of X, and
the complement )- X(s) is the disjoint union of
locally closed subvarieties X(_g), where _g runs
over certain subsequences of s other than
_s (Deligne-Lusztig [2]). The inclusions X(w’)

X,. X-X(w’)give rise to a long exact
sequence of cohomologies, and using the ones
arising from the locally closed disjoint union
X- X(w’) II X(_g), we get

2k

i=O "$

where in the right hand side of the second equal-
ity, the sum is taken over certain subsequences
of other than . (As before l is any fixed prime
number p.) By the assumption on , (R, p)r
is even for each such subsequence of , hence
(R., p)r must be odd. As p is selfdual, by the
Poincar6 duality of etale cohomology, we see that,

(H-for each > 0, (H(, 0,), P)6 (, 0,),
p)a. Therefore, we conclude that (H(, ),
p) is odd. Let V be the p-isotropic part of
H’(, ). Then the Poincare duality on H(,
Q) induces on V a nondegenerate bilinear map-
ping f with values in Q. f is compatible with

the action of Grf. is symmetric (resp. anti-
symmetric) if k is even (resp. odd).

Let us show that there is a simple submod-
ule Vo of V such that The restriction of f to Vo is
nondegenerate. In fact, suppose, on the contrary,
that no such submodules exist. Then, for any
simple submodule V’ of V, we must have V’ c
V’, where V’ {y Vf(x, y) 0 for all x

V’}. [We note that, as p is selfdual, Hom (V’,
) is isomorphic to V’ as G-module.] For any
submodule V’ of V, let m’ be the multiplicity of p
in V’. Let V’ be a submodule of V with minimum
possible odd m’ such that the restriction f’ of f
to V’ is nondegenerate. Let V be a simple sub-
module of V’. As f’ is nondegenerate, we have
dimo,V + dimo,V = dimo,V’, where V is the
subspace of V’ which is orthogonal to V with re-,. VF_spect tof V is stable. As V is a semisim-
ple , Gv] -module there is a submodule V of
V’ such that V’= VX@ V. Ve is simple since

dim0,V dimo,V. We note that V c V. We
see that V V @ M, where M V V
(V @ V) , and this is an orthogonal decomposi-
tion of V. It is easy to see that the restriction of

f’ to M is nondegenerate. But, as (M, p)a m’
-2 is odd, this contradicts to the minimality of
m" Let Vo be a simple submodule of V such that
the restriction f0 of f to V0 is nondegenerate. As
Q is isomorphic to C, we may regard as a

form with values in C. Therefore, by the theorem
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of Frobenius-Schur, we have mR(p 1 (resp.
mR(p) 2) if k is even (resp. odd). Suppose that
n- s(s- 1)/2, and that p is cuspidal. Then
r-- [s(s 4- 1)/4] [n/2] is equal to the semi-
simple Fq-rank of G. As p is cuspidal and (Rw,,
p)ae 0, we must have (--1) k-- (--1) r. This
completes the proof of the theorem.
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