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1. Introduction. By a Lvy process we
mean a stochastically continuous stochastic pro-
cess taking values in the real line /, having sta-
tionary independent increments, and starting at
the origin. In this paper we consider multimodal-
ity of some Lvy process. We use the following
definition of strict k-modality given by Sato [5].
The restriction of a a-finite measure /2 on/ to a
Borel set B is denoted by

Definition. (I) A a-finite measure/2 on 1 is
said to be strictly unimodal with mode a if it satis-

fies the following:
(i) The support I of/2 is an interval or a singleton,
and I contains a.
(ii) The measure [z I\ <a has a version f(x) of the
density which ix strictly increasing on I co, a)
if I f ( co, a) :/: b and strictly decreasing on

(a, oo) if (a, o)
(II) For k >- 2, a a-finite measure t2 on t is said
to be strictly k-modal if it satisfies the following:
(i) The support I of t is an interval.

(ii) There are disjoint sets I,...,
(J =I, each I is a singleton or an interval, and,

for each i, 12 I is strictly unimodal.
(iii) If I k, then there are no disjoint sets J1,...,
J such that I (3 =J, each J is a singleton or
an interval, and, for each j, 12 I, is strictly unimodal.

Strictly 2-modal is called strictly bimodal. The
modes al, az,. a of/2 ]i1, [. Ii,. I1 are cal-
led modes of

Brownian motion and stable processes,
which are familiar examples of one-dimensional
L6vy processes, are unimodal at any time (Yama-
zato [9]). But there are L6vy processes which
have time evolution in modality. This fact is
already known to Wolfe [8] and stressed by Sato
[31 [41 [51 and Watanabe [71. Examples show that
there are L6vy processes which change from un-
imodal to non-unimodal, or from non-unimodal to
unimodal, or from unimodal to non-unimodal and
again to unimodal as time passes. There are L6vy

processes which change between unimodal and
non-unimodal infinitely many times. Among these
examples, we have few Lvy processes whose
evolution in modality is completely known. One
of such examples is Wolfe’s (see [5] and [8]) and
another is a compound Poisson process {Xt:t >-
0} whose distribution at t 1 is
(1) /2 P6o + (1 p)ae-a I<0,)(x)dx,
where 60 stands for the delta distribution at 0, 0
<p 1, 0 a, and I<0,)(x) stands for the in-
dicator function of the interval (0, o). Sato [5]
proved that the distribution of X is strictly un-
imodal for t_< (1 + p)/(1-- p) and strictly
bimodal for t > (1 + p)/(1 p). The distribu-
tions of these two examples have point mass at
the origin. Hence, when they are strictly unimod-
al, they have modes at 0 and, when they are
strictly bimodal, one of their two modes is lo-
cated at 0.

We would like to find out examples which
do not have point mass and are strictly k-modal
at some t and whose time evolution in modality
can be analyzed for all time. In order to consider
this problem for k 2, we shall investigate mod-
ality of the L6vy process {Xt:t >_ 0} that has
the following distribution/.t at t-- 1

-ax -bx(2)/ (1 p) ae I<0,) (x) dx + pbe I<0,) (x) dx,
where 0 p < 1 and 0 a b. The distribu-
tions (1) and (2) are infinitely divisible by the re-
sult of Goldie [1], and X is unimodal with mode
0 for 0 < t ( 1 by the result of Steutel [6]. It is
difficult to analyze modality of Xt for non-
integer t > 1, but we can analyze it for integer

2. Results. From now on {Xt} is the Lvy
process that has distribution I2 of (2) at t 1.
We shall obtain the following theorem. Denote
the set of all positive integers by N.

Theorem. The distribution of Xn, n N, is
either strictly unimodal or strictly bimodal. Furth-
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b (l+bermore it is strictly unimodal if n

Remark. Sato points out that, if t > (1 -t-
p)/(1 --p), then, for any a > 0, the distribution
of X is non-unimodal for any sufficiently large
b, because, as b --+ co, Xt converges to the L6vy
process that has distribution (1) at t 1. Our
theorem shows that, if t is an integer, then
non-unimodality of the distribution of X implies
strictly bimodal.

Before proceeding to the proof of theorem we
shall state important two lemmas. In counting the
number of changes of sign of a finite sequence

ao, al, a.,..., a,, or an infinite sequence ao, al,
az, a,..., we disregard zero terms (see [2], p.
36).

We can find the following lemma in [2], p.
41.

Lemma 1 (Extension of Descartes’ rule of
signs to power series). Let the radius of converg-
ence of the power series t=oAtx be p. Then the
number of its zeros in (0, p) does not exceed the
number of changes of sign of its coefficients. Here
we count the zeros according to their multiplicity.

We can find a proposition including the fol-
lowing lemma in [2], p. 41.

Lemma 2. Suppose that

at At2l
=o (a-

wth > O. Then the number of changes of sign of
{At} t o does not exceed the number of changes of
sign of {a t} =o,,...,.

The distribution of X has the following de-
nsity L(w)

-ax [ n nL(z) e (1--P) a (n-- 1)

+Nz
t:o (b- a) j=/+l j

x q-1)(. -j-1). (- 1)-- j-1 1

"- (- 2- l)bx nbn x n-
+e- (n_ 1) + Xx

=o (a- b)--1

X n

=,+ j
(l-p)

x q_ 1)(-j- 1) (- 1)

This is proved by induction. We denote by
g<t)(x), 1 N, the 1-th derivative of a function
g(x).

Proof of Theorem. Set

fo x

F(s) e-f (x) dx.

Then

F(s) (l--p) a+ (l/s) + p b + (l/s)
We have

b(1-/2) (f(0)+ foe-}XeXf(x)dx).
bxHere we used the form of fn(x). Set hn(x)= e

f/z(x). In order to study modality of the distribu-
tion of X, we look at the number of zeros of

h(x) in(0, co). Since h(x) is analytic, Lemma 1
says that it is enough to look at the number of
changes of sign of {h(t)(0)}t>0 Now we consider

the power series

(1--/2)F b(1--/2) At ii"l=O

Use integration by parts repeatedly. Then,

/2 /2 /2\
At i b f (0) + [--) hn (O) +

l=O

()’ ()’ fo -Xh(:-l’4- h<-’(0) -P e (x)dx.

Differentiate both sides 1 times, and let /-- O.
Then

I! h<t_z) -x,(/-1) (X)A .. (0) + lim2..o d/ e n

1!

b- .. (0).

Here we used the form of hnt-l>(x). Hence the
number of changes of sign of {hnt) (0)} to is equal
to the number of changes of sign of {At}t . On
the other hand,

,(1 ,) b- (b- a), + p

=p"2"(1-2) a-2 +1

b (1 p)a
where a= b--a’/3= p(b-- a) Now notice
that

(1 /2) ( /3 + 1
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--(1--) [(--+ 1)n+ l=1 (- + 1)
a / (n-- 1+ 1)1

x {( --l+ 1) ( 1)/( + 1)}
--(- 1)()(__2)2

(+1 + [(+
1 1) +

( )-- () n[ 1+ + 1 (- l)(l + 1)

Since > 1 and > 0, the coefficients of_
2 1- 0 1, , in the brackets in the

last expression change sign at most twice. Now
we can apply Lemma 2. We see that A 0 for 0
<- I-< n-- 1, An > 0, and the sequence {A}>
n+l changes sign at most twice. Therefore,
f(x) has at most three zeros in (0, oo). Hence
Xn is either strictly unimodal or strictly bimodal.

Suppose that n>_
b--a --1----

which is equivalent to

-a + 1 +-_
Then we see that An+l--> 0 and that {A}n+
changes sign at most once. We see that, for
2, f(0)= 0 and f(x)has only one zero in
(0, ). This completes the proof of Theorem.

Corollary. The distribution of Xn is strictly

unimodal for every N if
a(b 2a) > p

b l-p"

Proof By the latter half of Theorem, the
distribution of X is strictly unimodal for every
n2, if

2 b--a l--p

a(b- 2a) _>This condition is equivalent to

l--p"

Remark. If n<_
b a a+b+2bl_p

then the distribution of Xn is strictly unimodal.

In fact, in this case (n-- 1)--- (c-- 1)2

(+ 1)<--0 and {A)_>n changes sigfl at most

once.
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