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Introduction. For a hyperbolic Riemann
surface R, we denote by A2(R)the set of all
holomorphic quadratic differentials - (z)dz
on R, and set

(R) { A(R)" I[ "=A
-11 < fo<<R

A:(R) { A(R) [ "=

ess sup  ; l 1 <
where R--R(Z)dz is the hyperbolic metric
on R with constant negative curvature --4. For
simplicity, we often write []]]p, instead of

A quasiconformal mapping f of a Riemann
surface R is called extremal if it has the smallest
maximal dilatation in the class Q] of all quasicon-
formal mappings of R which are homotopic [o f
relative to the border R of R. An extremal map-
ping is called uniquely extremal if there are no
other extremal mappings in Q. Hamilton, Reich
and Strebel have characterized the extremality: a
quasiconformal mapping f is extremal if and only
if there is a sequence {n}nx in A(R), Cn

lim_ / ess sup1, such that I,
where is the Beltrami coefficient of f (Strebel
[10]). Such a sequence is called a Hamilton sequ-
ence for f and it is said to degenerate if it weakly
converges [o 0.

A quasiconformal mapping whose Beltrami
coefficient has the form k6/] b [, where 0 k
< 1 and Ae(R)k {0}, is called a Teichmaller
mapping corresponding to . In the theory of ex-
tremal quasiconformal mappings, Teichmfiller
mappings play an important role. We know that
every Teichmfiller mapping corresponding to

A(R) is uniquely extremal (Strebel [10]),
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but there are non-extremal, and extremal but not
uniquely extremal Teichmfiller mappings (Strebel
[8]). So it is expected to find conditions for a
holomorphic quadratic differential that guaran-

tees the Teichmtiller mapping corresponding to
to be extremal or not. For the case R is the unit
disk D, some extremality theorems have been
proved, for instance, Sethares [7], Reich-Strebel
[6], Hayman-Reich [2] and one of the authors [3].
On the other hand, Strebel [9] has constructed an
example which shows that a lift to the universal
covering of an extremal Teichmtiller mapping of
a compact Riemann surface is not necessarily ex-
tremal, and recently McMullen [4] and one of the
authors [5] have generalized this.

1. In the present paper, we prove the fol-
lowing:

Theorem 1. Suppose that R is a hyperbolic
Riemann surface of finite analytic type, and that
r" R -- R is an infinite sheeted regular (i.e. un-
bounded and unramified) covering from another
Riemann surface R to R which satisfies the condi-

tion"

($) for any puncture a of R and any cusped
neighborhood V of a, there is an integer
m such that the restriction of 7r to any

-1
connected component of 7c (V) is at most
m sheeted.

Then for A(R), : :/: 0, and U 1_<<

A ([), the Teichmitller mapping f=, corresponding
to the pull-back 7c* A() and the Teichml-
ler mapping f.,+ corresponding to 7r F +
A() have the same Hamilton sequences. In par-
ticular, f, is extremal if and only if so is f,+.

As an application of our Theorem 1 and
McMullen’s theorem, we have

Corollary 1. Let 7c" --, R be a covering as

in Theorem 1. If, moreover, 7r is nonamenable, then

for any A(R) \ {O} and any A(/)
1 -- p OO,any lifts to the unit disk of the Teich-
mller mapping of [ corresponding to 7c @ are
not extremal.

Proof By McMullen’s theorem [4], the
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Teichmfller mapping corresponding to 7c gc is
not extremal. Thus the Teichm011er mapping cor-
responding to 7c*gc+ b is not extremal by
Theorem 1, hence its lifts to the unit disk are not
extremal.

For a Fuchsian group / acting on the unit

disk D, define

A(D, F)"- { A(D) 7*- for all 7 F}.
Corollary 2. If F is a torsion-free Fuchsian

group acting on D such that the Riemann surface
F\ D is compact, then for any A2 (D, 13 \ {0}
and any b A (D), 1 < p < oo, the Teichmfiller
self-mapping of D corresponding to gc + b is not
extremal.

In particular, there is a non-extremal Teich-
mller mapping which is not compatible with any
nontrivial Fuchsian groups.

To prove Theorem 1, we need some lemmas.
The hyperbolic distance between a, b R is de-
noted by dR(a, b). For a R and > 0, we set
A(a;/) {b R dR(b, a) < 1}. The supre-
mum of all l> 0 for which A(a;/)is simply
connected is called injectivity radius at a, and de-
noted by inj rad(a).

First of all, by the mean-value theorem for
holomorphic functions and H61der’s inequality,
we have

Lemma 1. Suppose that R is a hyperbolic
Riemann surface and the injectivity radius at a
R is not less than 1. Then for all A2 (R) and
l_p< c,

(re tanh" l) 1/

Lemma 2. Let re" ---+ R be a regular cover-
ing of a hyperbolic Riemann surface R, and o be the
injectivity radius at a R. Then for Az([)
and 0 < l

_
1o/2, we have

IIl,-l<A<a;e)) <-- [Ix tanh" l/tanhZ(lo/2).
-1

Proof Let zc (a) and b A(a;1).
Since the injectivity radius at b is not less than
lo/2, we see

tanhZ(lo/2)) by Lemma 1. Integrating this on
A(;1) and summing with respect to , we
obtain Lemma 2.

Lemma 3. Let 7c" R---+ R be a regular cover-
ing of a hyperbolic Riemann surface R, a be a punc-
ture of R, V be a cusped neighborhood of a which is

expressed by (0 <lzl < 1} in terms of a tocat pa-
rameter z, and U be the decomposition of
-1

rc (V) to its connected components. If there is an

integer m such that the numbers of sheets of the
restrictions 7c j are bounded by m, then we have

1/m

and 0 r 1/3, where C(m) is a constant de-
pending only on m.

Proof Take a local parameter on V in

terms of which ()- n, where n is the num
bet of sheets of the covering ]py" g V. Since- ()d has at most a simple pole at 0,
by applying the mean-value theore to (),
we have Co<m)II for
0 < ]{[ < (1/3) l/n, from which the assertion
follows by the same way as in Lemma 2.

Proof of Theorem 1. Because , +
Alz(), all Hamilton sequences for f. and

for f.+, if any, must degenerate. So it is enough
to show that

for any sequence {n}n=l A12(), n 1,
which is weakly convergent to 0.

Let t > 0 be a small number. Let a,..., a
be the punctures of R, and b, b R be the
zeros of , and take small cusped neighborhoods

V, Ve of a ae, and small disks U1,
Ut centered on b,..., b so that they are mutual-

e U, and letly disjoint. Set N U j=l U j=l

6 be the minimum value of 21 on RN. By
Lemmas 2 and 3, we may assume that , II,-l<u,
< s for any n. Take a large compact set K
so that 2  11 s6 outside K U -(. By
Lemma 1, we can take such a K. Since Il/

$ -11 1 N son(K U (),we have

(KO -i (N)) -1 (N)

+ 2 1Cnl +
Letting n and 0, we obtain (1), and the
theorem is proved.

2. To prove (1), the condition (*) is essen-
tial. In fact, we can show

Theorem 2. Let R be a (not necessarily analy-
tically finite) Riemann surface with a puncture a, V
be a cusped neighborhood of a, " R R be a reg-
ular covering, and { } be the connected compo-

-1
nents of (. If the numbers of sheets of the
coverings " V are unbounded, then there
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exist b A() and a sequence (n}nl A(),
Cn II- 1, such that for an arbitrary A. (R),

0 < IlcYI]-< 1, .
lim

I*1 " 0, but

- , = 1.im
]= + ]

Lemma 4. Let R be a Riemann surface, and
R. If inj tad(a) 2 21, 1 lo "= log( + 1),

then there is A(R) such that 1- 1,, ;)
g 2-1(1 tanh l),

]]--_ :g(1--tanhl) onA(a;l).
Moreover, let b be a point on R for which
inj tad(b) lo and d(b, a) l" + lo, then

(2; )(b) g 1 tanh l’.
Proo Let "DR be a universal cover-

ing such that (0) a, F be its covering trans-
formation group. Then, by the standard argument
and Lemma 1, it is not difficult to see that
(*)-(rr(’)/] rr(’) ]]) has the prop-
erties in Lemma 4.

Proof of Theorem 2. We may assume that
v= (o < z < e- &(z) dz
[log[z)-[dz[ in terms of a local oarameter
z. Since each -- (z)dz has at most a simple

o t a, ; (z) (z) cl ]z]
z

Let {/.}. be a sequence such that l l0
and lim l , and define a sequence of large
numbers {/}=1 so that 1 tanhe/ g 2

-(+7)

(1- tanh l) e. Our assumption on the numbers
of sheets of the coverings implies that we can
take disks A’-- A(a;l + l) in -((C1
log]z}] g 2-(+7)(1-tanh/)}). We may
assume that these disks {A,}n= are mutually dis-
joint. Let A() be the holomorphic quadra-
tic differentials obtained by applying Lemma 4,

--2
and set ": =12-n A(). Since

$ (2+2)I 1 2- 21ld l2-kl
2
-(n+) l on n’-- a(a l), we have

I(*+ )/I + 1- /I 1[ g 2-n.
Thus we see

On the other hand, there is a constant C2
uc tt II,v <- c II,v o ny e

A(R). Hence---- 0\. < (C.+ 1)

where OX A() A(n) is the relative Poin-
car series operator. This completes the proof.
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