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A Higher-dimensional Analogue of Carlitz-Drinfeld Theory

By Hideki TANUMA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1995)

The purpose of this paper is to generalize
the arguments of Carlitz and Drinfeld to the
higher-dimensional case by giving some analogies
of special functions like the Carlitz exponential,
the zeta function, the gamma functions, and the
modular forms. This is a resum of my master
thesis at University of Tokyo, March 1994, and
the details will be published elsewhere.

In the paper of Kapranov [6], the method of
the completion is given and the higher-
dimensional version of the zeta function is de-
fined. So we apply the idea of Kapranov to define

some analogues of the special functions other
than the zeta function and deduce the properties
of these functions.

1. An analogue of Carlitz exponential. Let
A- A- F[T Tn] be the polynomial ring

over finite field in n variables and k- kn

Fq(T1 Tn) be its field of quotients. The ring
A is embedded discretely into the complete topo-
logical field K- K Fq((tl))... ((tn)) with tn-
adic valuation when we set

tn_ tn_ tx 1
T1 tn,T2= tn Tn_l=tn, Tn--tn.

Let C= Cn K be the completion of the
algebraic closure of the field K and for any
q-lattice A over C we define the function ea
C-- C

e(z)=z II (1--)
2A-O

where we call any discrete submodule ’lattice’.
The function eA satisfies the following prop-

erties.
(1) eA is entire.
(2) eA is Fq-linear and A-periodic.
(3) eA has simple zeroes at the points of A,

and no further zeroes.
(4) if A, A" cA(c C*) are similar lat-

tices, then ceA(z) eA,(cz).
(5) The derivative satisfies e(z) 1.
We define the power series ca(z) by

eA(az) 2(eA(z)). In the higher-dimentional

case, for an A-module A of finite rank, we have
#(a-A/A) oo for any a A- q, and 2(z)
is not a polynomial like in the one-dimentional
case.

In the two-dimensional case, we have the
following theorem.

Theorem 1. Let A A F[X Y] and
(X, Y) be the ideal of A generated by X and Y.
Then the coefficients of the series

eA (Xz) leA (z) q’

i=O

are written as
qi-

lo-X, I-X’ E rhr.’-" r, (i>O),
OJl<J2...<J

vi e(x,r,+x) (Yi)
1--q

and their valuations are
i-1 k(k-1)

v(l) q + (q 1) Z Z q+
j=0 k=l

2. The analogue of zeta function. The Goss
zeta function was generalized to the case of A
An- Fq[T1, Tn] by Kapranov [6l. We recall
the construction.

We start with the definition of the term
(1)

monic. For a K, let a be the element of
Fq((t))... ((t,_l)) such that

(1) .v(a)
a- a 6 + a, v(a’) > v(a).

(2)
Similarly, a Fq((t))... ((tn_)) can be derived

(1) (n)
from a and finally we get an element a

Fo. In this case, we call an element a ’monic’
(n

iff a 1. The set of monic elements is closed
under multiplication and this definition is com-
patible with the old one for A- A1.

For any natural integer s the series
1

CA(S) E
monic aA a

-s
is convergent because the point set (a [a
A- 0} has at most finite points in neighborhood
of 0 and non-Archimedean property shows this.
In addition to this, A- A is also an UFD as in
the case of one-dimensional, then the above sum
has the Euler product

II (1- )-s)-i.
monic irred, f A
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Kapranov [6] proved that ca(s) A holds for
any negative integer s.

The exponential ea(z) has the relation to the
special values of cA.

Theorem 2. Let

oA (Z) 1/’, og(z) /’ Z

=o =o e(z) =o
7z.

Then,

(a aq) A (q 1) kl q,
l_(q 1),

i=O

(q 1) ,
((q- 1)k)

fork 1,2,
Particularly, in two-dimensional case A

A Fq[X, Y] and a X, the coefficients
q-

lo- x, 1 xq’ Z .. (i > o),
O<jl<J2<...<j

e(,,/) ( Y)-have been derived, and they give the special
values of zeta function and especially

(q 1)
1 Z e(x,,/) (Y)

-q

1 x-q --o
holds.

3. Some analogues of gamma functions.
Now, we will generalize the gamma functions to
the case of A A FaITh,..., T].

Let the definition of ’monic’ be the same as

in the argument of the zeta function and let

D II a.
monic aA
deg a=i

Then, we express any nonnegative integer n as

nia, 0_< ni<_ q-- 1 and set
II(n) 1-I D.’ A

and define the first gamma function as F(n)=
II(n- 1). This function satisfies the following
property.

Theorem 3.
integers, then

set

Let a and b be any nonnegative

II (a + b)
A.n(a)rI(b)

Now we define (a) for a monic a K, we

-Vtn(a). -v (a ()) (a(n-1))(a) ar, 6_i- tl vtl

where vt, is t-adic valuation of Fq((tl))...((t)).
In this case, (a) is integral in the mean of

t-adic valuation and (a) ()
is also integral in the

mean of tn_ valuation and finally (a) (n)= 1
satisfies. We call such an element of K absolutely
integral. In this case, for any b K, to be abso-
lutely integral is equivalent to be monic and

satisfy the condition (b) b. As the set of abso-
lutely integral elements is closed under multi-
plication, (ab) (a) (b) satisfies.

And now, for any z- =oZiq Zp, we
consider the following gamma function

IIoo (z) [I (D) ’,
i=0

Foo(z) IIoo(z- 1).
Theorem 4. Fo (z) satisfies the following

properties.

(1) Foo(z)Fo.(1 z) Foo(O).

(2) Ifp Y n, then Foo(z) Foo(Z + )..

Next, we define one more gamma function of
characteristic p. We put .4<_0 {-- a A la is
monic or O} and for any z C- A_< o, we define
the gamma function Fo(z) as

Fo(z) _1 H 1 +
Z monic aA

and define the factorial IIo(z) as IIo(z) zFo(z).
This function satisfies the following property.

Theorem 5. The factorial function IIo(Z)
satisfies

ZII IIo(cz)
cA*=F: eA (Z)

Remarks. In general, the fact that 1/

rio(a) A for any a A does not hold in the
higher-dimensional case. In fact,

1 2(Y+ 1)(Xq X + rq Y)
fl0(Y) X X

occurs in the case of A A Fq[X, Y].
4. Modular forms. Now, we take the space

which corresponds to the classical upper and
lower half-plane as

2= C--K.

Let 7"-- c d GL(IO act onz Dvia

(a b) az+ b
rz (z)

c d cz+d"
We define a modular form of weight k as a func-
tion f f2-- C which satisfies

f cz+d (cz+ d)kf(z)

for any (ac db)_ GL2(A). Let Mk be the

C-vector space of modular forms of weight k,
then MMg, c M+g, holds and Mk =/= 0 only if
(q-- 1) [k.
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Now, we define the Eisenstein series as an
example of modular forms.

Theorem 6. The Eisenstein series

E () (z) (mz + n) -(m,n)A- (0,0)

is a modular form of weight k.
As in the one-dimensional case, modular

forms are related to rank 2 lattices.
Theorem 7. Let z Q and take an A-lattice

of rank 2 with period (z, 1) as Yz- Az @ A and
let

Y-O
which is Y-periodic. Let the power series

CYa (X) E lkxq
k=0

satisfying eyz (ax) aVZ(er (x)) for any a A.
Then le le (z) is a modular form of weight q 1.

For an Fq-lattice A C, let Se .A(Z +
)- and t(z) 1/eA(z). In general, Se Ge(t)
is a polynomial of t--$1. (This corresponds to
the Goss polynomial in the one-dimensional case.)

For any a A let
1

ta t(az)
eA (az)

then in the case of (q--1)lk, the Eisenstein
series E (e)(z) can be written as
E (e) (z) E (az + b) -e

(a,b)A2- (0,0)

E b-k- E E (az+b) -k

bA-O monic a bA

A (k) X G(t,).
monic a

However, different from the one-dimensional
case, in general, ta t(az) can not be written as

the power series of t t(z)--1/eA(Z). In fact,
let (zi) be a sequence such that eA(Zi) O, then
putting z T / T + zi, we have

eA (z) eA (T / T1) + eA (z,),
eA (Tz) eA (T) + eA (Tiz) 1(eA (Z,)).

Therefore, tT1-- oo occurs even if t-- 0.
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