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On the Difinition of the Virtanen Property for Riemannian Manifolds
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In our former paper [4] we introduced a no-
tion which we called the Virtanen property for
Riemannian manifolds. The property is always
fulfilled by two dimensional Riemannian man-
ifolds so that it often ensures the possibility of
extending certain potential theoretic results valid
for two dimensional case to higher dimensions.
The purpose of this paper is to give a new defini-
tion of the Virtanen property which is equivalent
to but more understandable than that given in [4].

Throughout this paper we let M be a non-
compact, connected and orientable Riemannian
manifold of class C of dimension n

_
2. Let

(gij) be the metric tensor on M and (giJ)
(g)-t. With an s-form ee on M(0

_
s

_
n)

whose local expression in a local parameter x
(xt,...,xn) is

a al...s(X)dx A A dxs
i< .<i

we associate a nonnegative function ]a on M,
usually referred to as the point norm of a, given
by

ah. ..is)
l<’’’<is Jl,’’’,Js

ail.., is"

If a is measurable, then we can consider its
p-norm (1 p )

M

where dV is the volume element on M. Using
these notations we can give our new definition of
the Virtanen property:

Definition. The manifold M is said to possess
the Virtanen property if for any C (n 2)-form a
on M with d II < there exists a sequence
(am) of C (n 2)-forms am on M such that
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(3) lim dee- deem 112 0.

If the dimension n 2, then the given form
ee and sought forms eem are 0-forms, i.e. func-
tions, on M. Taking eem as a suitable regulariza-
tion of the function max(min(ee, m),- m)for
each m 1, 2, we see that (2) and (3) are
satisfied by these ee and eem (cf. e.g. [3]) so that
the Virtanen property is always possessed by
any two dimensional Riernannian manifold M. In
our former definition of the Virtanen property in

[4] we had
(4) N[eem] "= sup(ll eem / dq)[[2/lld

c((o)) <
instead of (2). The function norm is much
easier to compute than the operator norm
N[a] so that we may say that our new definition
is better than our former one. To assure that
these two definitions are actually equivalent we
have to prove that these two norms are equiva-
lent. The practical purpose of this paper is, thus,
to prove the following

Theorem. The norms and N[] for any
C (n- 2)-form are equivalent, i.e. the follow-
ing inequalities are valid for every C (n- 2)-
form a on M
(5) (n/2) g N[a] g L.

Observe that (5)implies N[a] for n
2, which we already remarked in [4]. Inequali-

ties in (5) are sharp in the following sense: for ev-

ery dimension n 2, there is a couple (M, a)
such that N[a] (n/2) -/2 L > o and also

> 0. Such examples will be given
right after the proof of (5).

Proof of Theorem. A parametric neighbor-
hood (U;x)at M is always supposed to
satisfy x() 0. We say that a parametric
neighborhood (U;x) at M is special if the
components of the metric tensor (g(x))in the
local parameter x takes the form g(0) 6 so
that g(0) 6" as well (i, j 1,..., n).

We start with the proof for the second ine-
quality in (5) which is simple. Take any
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Co (M)\{0} and any point M. We can find a

special parametric neighborhood (U;x)at
M (cf. e.g. [1]). Let the local expression of in
terms of x be
(6) a , ail...,,_. (x) dx ’ A A dx’-.

i.t< ...<in-2
On denoting Djq oq/Sx we have

(7) crAd(p ( al...,_ (x)D(p(x)dx 1
j--.1 il<...<in_

A A dx’- A dx)
where <...<,_. means the sum with respect to
i."i,_ such that {i,..., i,_} c {1,...,
n}\{j} and i <’’" < i_. In view of (1) and
g(O) gu we deduce that

il<’’’<n-2

n
(0) z, Idpl ()z= E

(Do (0)
a A dl ()

( E a,...,,,_(O)Z(Dq(O))Z).
j=l il< ...<in.

Since X<...<,._ a,l...,,_2(0) z - I1 <)z z a I1,
we see that

I A dl (D

{ , a,,...,,,_.(o)l (Dp(O)) 2

j----1 il <. ..<in_

j=l

i.e. we have obtained that A
d on i. Unc we have A de I1 I1
d I1, wic ,ov N[d

We turn to the proof for the first inequality
in (5) which is less simple. Fix any point M
and choose a special parametric neighborhood
(U;x) at . Again let (6) be the local expression
of in the local parameter x in U. Let B be the
open ball of radius 6 )0 centered at the origin
of the Euclidean n-space and U ( U"
]x() ( }. There is a 6o ) 0 such that is
compact in M and x" U B is a homeomorph-
ism for 0 ( ( 0. Fix two arbitrary real num-
bers K ) 1 and e ) 0. We can find and then fix
a 0 ( 6 ( 6o such that for every x B
(8) K- (). (g(x)) K(6u) and

K- (") (g" (x)) K(au)
in the sense of matrix inequalities and also for
every x B
(9) a,..,_ (0) e < a,...,_(x)
for every (i,...,in_} {1,,.., n} with i (

( i_z.
For an arbitrary integer 0 s u we con-

sider a s-form fl on U whose local expression
in x is

fl= , bi...s (X) dx ’ A A dx is.
il<...<i

Besides the original point norm [lof/3 we con-
sider the point norm I/3 le with respect to the fiat
metric tensor (6ij) on U"

il< ...<i

X (b,...) .
il <. ..<i

Here we note that le () fl () since
g(O) i. Now let (x), ,(x) be the
proper values of the matrix (g(x)). Then the
proper values of the tensor product (gU)@

(gi) of S same matrices (gU) are 2i,’’" is(il,
is- 1,..., n). Since the second part of (8)

is equivalent to K- K (i 1,..., n) on
B, we have K-s

2i "2, K (i,..
1,..., n) on B, which is equivalent to
K-(6i) (6i) (gU) (gU)

K(u)’’" (6u)
on B. This implies the following inequalities
valid on U"
(10) K- fl fl [z K fl lz

Take any C(U)(0)( C((0)).
Recall that dV dx where g det) and
dx dx A A dx on U. The first part of
(8) implies that det(K-(6u)) det(gu)
det(K(6u)) so that K -n/2 Kn/2

on U.
Using (10) for a, d and a A d we see that

K3n/2-1 A d I1 s KZ’/Z-’Nia] d I1
"-Nid

_
I x

U

4 "-N[a]+’’ [_ I Ix
U

so that on oting f Co (U) we have obtained

(1 1)

We ow specilise f C(U)X{0}. For
the purpose take a smll )0 such that the in-
terval [-- , :] x x [-- :, ] (n factors) is
contained in U. We can find a e Co (R
such that supp c [-- v, v] and A’=

(t)dt > 0 so that B "= ’(Odt > O.

On setting p(z)= t(x) we may view that
p C2(Uo){0} c C2(M){0}. Then we see
that Dp(x) ’(x), (z) (i 1,..., )
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and

do (x) ]z , (O,o (x))Z , (x,)2 H (
i=1 i=1 ji

By using the Fubini theorem we see that

(z)) 2dz equals

(x)Z A,-IB
T

for every i: 1,..., n. Thus on setting C
A-B we obtain

(D(x))Zdx- C (i 1,..., n)(12) and

d(x)Idx nC.

From (7) and (9) we infer that

z’
j=l il<...<in_

E (a,...,_ (0) s) (D (x))
il<""

on U and hence on U by Co (U). Therefore
we obtain

( (. (O) 2 e) 2 (D9 (x) Z)
il<...<in_

".in_

ldld.
From this with (11) and (12) we deduce that

il< ..<in_

Since K> 1 and > 0 were chosen arbitrarily,
we may letK 1 and s 0 in the above inequal-
ity to conclude that

( X’ a,x. (O)Z) nN[] z

1=1i1< "’<in-2
"’in-2

The left hand side term of the above inequality can
be easily seen to coincide with 211 (0 z. Here we
have used [.[ (0 I"le(O. Therefore [.I

(n/2)N[a] z. Since M is arbitrary, we
finally conclude that II- II Z <n/2)N[a] .

We let M be the Euclidean n-space Rn
with

the usual Euclidean metric tensor ()in the fol-
lowing two examples. First, if we take

x<...<i_dx dx- in the natural coor-
dinate x (x ) Rn,x on then N[a]
(n/2)-’ II- L. In fact, for any C(R){0},
we see that I-mdgl= (n-1) ldl and
thus N[a]

_
(n 1)/z. Since a n(n- 1)/

2, II- I1 (n(n 1)/2)/z. A fortiori, N[a]

_
(n/2) -x II- IL, which with the left hand side of

(5) implies that N[ce] (n/2) -1/z
a IL > o.

Next, we show the existence of a C (n--
2)-form c on Rn

such that Nice]- ll > o,
Since this is always the case for any Coo (2-
2)-form ce =/= 0 on Rz, we only have to consider
the case n 3. Then the required is - dx
A dx4A A dxn

in the natural coordinate x
(x ),...,x on R. In fact, we can choose a

m C:(R) such that (t)Zdt m and

m(t)2dt (X/m)for each m 1, 2,

We also choose a $ Co () such that A’=

(t)2dt >0 and B ’(t)dt > O.
n

Then set cm()= m()H=2(), which be-
longs to Co (Rn). We have

dm 22 =mdn- + e(1/m). (n 1)A-2B,
a A d 122- mA- + e(1/m) .A-2B.

Thu g[.] sup II- dm I1/11 dm I1 1
II- I1 so that N[a] II- L, which with the right,
hand side of (5) implies that N[a] I1.

Finally we consider the case M is a subre-
gion of Rn

which is homeomorphic to the unit
ball {x Rn" Ix I< 1}, The proofs of the fol-
lowing facts will appear elsewhere.

Fact 1. If the boundary M of M relative to
Rn

is a smooth closed hypersurface, then M posses-
ses the Virtanen property.

Fact 2. If M- {x Rn" 1/2 <Ix I< 1}
{(x x, 0,..., 0) R’1/2 < x < 1}, rheuM
does not possess the Virtanen property.

Fact 3. If M is star-shaped with respect to a

point in M, then M possesses the Virtanen property.
Every point in M in Fact 1 is

Dirichlet-regular. The M in Fact 2 contains the
set {(x 0 0) eRn 1/2 <x < 1} of
irregular points in its boundary. Looking at these
two results one might feel that the existence of
irregular points in M has something to do with
the Virtanen property for M. From this view
point the significance of Fact 3 lies in the fact
that there is a star-shaped region M whose
boundary contains the Lebesgue spine (cf. e.g.

[2]), an irregular boundary point.

[11

[21
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