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In this paper we discuss explicit calculations
of homology and cohomology of a Lie superalgeb-
ra. Complete results fore g[(1,1) and [(2,1) are
given in case the dimensions of representations
are finite. Our result implies that for any n

Z> o, there exists a finite-dimensional irreducible

9-module V such that Hn(9, V)4: {0}, contrary
to the case of finite-dimensional Lie algebras.
This means that the Poincar duality, which is
proved by S.Chemla [1] under a certain restric-
tive condition, does not hold in general in our
case. For definitions and notations we mainly fol-
low Kac [61.

1. Generalities. Homology groups I-In(g, V)
of a Lie superalgebra g--flg7 with coeffi-
cients in its representation space V are defined
similarly as for a Lie algebra (cf. [7, p. 283]) and
they can be obtained as KerOn_l/Im0n in the
following complex (B, 0):

O---Bo---B---B--B--’", B. A"@ V,

On_l(x A A Xn @ v)

2 (-- 1) ’+’;X1 A ]... A Xn @X,v
+ E (-- 1) k+t+’k+"+k’ [X

k<l

AX1A ’’’ 1’’. AXn@v
where X , homogeneous, v
"= de9 X,, r/, e,(l + +
-+-""-+-n), and the symbol indicates a term
X, to be omitted (cf. [8]). The Grassmann algebra
A g here is defined as the quotient of the tensor
algebra of g by a two-sided ideal generated by
{X@Y+ (--1)lxlllY@XlX, Y,; homoge-
neous} and it is a fl-module through a natural ac-
tion:

X.(Xx A iXn)
(- 1)IXl(+"’+’-)X A A [X, Xi] A A X,.

Then Bn’s are g-modules with on(X)(O@ v)=
XO@ v + (--1) lx ll O @ Xv (X g, O X1A
AXn An

fl, [0[ 1 + + e, v V) This

action commutes with the derivation 0, that is,

XoO. O._oX.
We appeal to the following lemmas to calcu-

late the homology and the cohomology.
Lemma 1. Let O be a subalgebra of g such

that its natural representation Ohio on the n-th
chain B are all semisimple. Then, the homology
I-In(, V)can be obtained from a subcomplex (Bq,

IBm), where the n-th chain B, for B is the sub-
space of q-invariants in Bn.

The space V* "-Home(V, C) has a natu-
ral -module structure.

Lemma 2 (Duality). Let be a Lie super-
algebra and V a -module. Assume that and V
are both finite-dimensional, then there are -module
isomorphisms between homology groups and cohomol-
ogy groups as

H" (, V*) - H. (, V) *.
2. Case of g[(1,1). Fix a basis of the Lie

superalgebra g- g[(1, 1) as follows:

H=- 0 --1 01’

X=
00 1 0

The elements H and C generate a Cartan sub-
algebra, which .is equal to the even part g of g in
this simplest case. Put gl CX and g-1 = CY.
Then the odd part is g7 = 91 + 9-1, and this
gives a Z-grading of g together with go flY. Let
L(A) "= Cvo be a one-dimensional representation
of gg given by Hvo =/lvo, Cvo cvo(2, c C)
and A denote a pair (,t, c). For a subalgebra

P’= g+gl, we extend L(A) as a p-module
through a trivial action of X, Then the induced
module V(A) "= (g) @,L(A) defines a repre-
sentation of 9. V(A) is irreducible if and only if
c =/= 0.

We calculate the homology Hn(g, V(A)),
which is isomorphic to Hn(p, L(A)) by Shapiro’s
lemma on induced modules (cf. [7]). Put X<)= X
AXA A X Agand
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a. X () (R) Vo, ft. H A X ("-) (R) Vo,
’. C A X ("-1) @ Vo, 6. C A H A X("-) @ v0.

Then, they generate the space B of n-th chains.
Now we take 9 as a subalgebra q of fl in Lemma
1. It is necessary that c 0 and / Zo for
a subcomplex (Bq, IBm) to be non-trivial. In that
case, the complex (Bq, IBm) in Lemma 1 for V
V(A) can be written as

o Ca_ (_,

_
c C6_ o,

and the derivation c is equal to zero. For calcula-
tion of cohomology groups we use the duality in
Lemma 2 and ?(/, 0)* ?(--/, 0). Thus we
have the homology I-I.(, V(A)) and cohomology
I-In (, 17’(A)) as in the following theorem.

Theorem 3. In case c--0 and --Z>o,
dim H, (, V(A)) 1 (n , + 2), and

2 (n: --, +1). In all other cases, H(fl,
?(A)) (0}.

In case c- 0 and/ Z>o, dim H (, ?(A))
1 (n 2, 2 + 2), and 2 (n + 1). In all

Hn
other cases, (9, if(A))- {0}

In case c 0, the module V(A) is reducible
and has a unique maximal proper submodule, say
I(A), and the quotient is a unique (up to iso-
morphisms) irreducible representation V(A) of
[(1,1) with the highest weight A’V(A)
V(A)/I(A). By calculations, we get the following
result (cf. [9]).

Theorem 4. Let c: O. If 2 --Z>o, then,

dimH(, V(A)) dimH’(, V(A)) 1 (n -,
--/ + 1) and H.(9, V(A)) I-I"(, V(A))
{0} otherwise.

If Z>o, then, dimH.(, V(A) ) dim
H"(9, V(A)) :1 (n:/, 2+1) and H.(, V(A))
-Hn(9, V(A))- (0} otherwise.

3. Case of [(2,1). Let

H= 0 --1 0 ,C 0 1
0 0 0 0 0

Ei3,and Z+-- E12, Z_ E2, X
(i 1,2), where Eij denotes the elementary mat-
rix with 1 in (i, j)-component and 0 elsewhere.
The elements H, Z+ and Z_ generate a Lie algeb-
ra which may be written as gl(2, C). We take an

o)
Y E

irreducible representation Vo L(A) of gg-
g[(2, C)@ C" C with A (, c), which is a (
+ 1)-dimensional irreducible gl(2, C)-module
(/ Zo) and on which C acts as a scalar mul-
tiple by c C. We get an induced representation
12(A) "= a//(g) @ Vo, where p g + gl and 91

(X1, X.)o Define V(A) as an irreducible quo-
tient of V(A)by a maximal submodule I(A)of
V(A). Every finite-dimensional irreducible repre-
sentation of e(2,1) is realized as V(A). V(A) is
irreducible if and only if (R c)(/ + c + 2) 4=
0. In case V(A)is irreducible, we can get the
homology groups Hn(g, V(A)) which are isomor-
phic to H.(p, L(A)) by Shapiro’s lemma. The lat-
ter vanish for any n.

CASE C 2o. When 2 c- 0,
V(2, c) C and homology groups are obtained
similarly to the follwing case.

In case 2 c > 0, we have V(A) -I(A’) with A’ "= (Z, c’) ( 1, c- 1). and
I(A’) is decomposed into two irreducible fly-

modules (cf. [4]) as I(A’)- 11 @ 12 with I1 :=
(-- i(Y @ v,_x) + Y2 @ v, O <- <_ ,a" + l>c

and I2 "= Y1Y2 @ L(A). Accordingly we have B,
Bn @ B.2, where B. @ P+q+r=n (A Pg-6 A qgl

@ Arg_l@ Ii). We take fin as 0 in Lemma 1. On
each component, C acts as a scalar multiple by

q + r + i. /g is decomposed into four
3-dimensional irreducible g[(2, C)-modules and
a 4-dimensional trivial gl(2, C)-module, while

Ar
highest weights of /xq91, g-1 and I are q, r
and 2’+ 2- i respectively. Here 9-1 (Y1,
Ya> c"

Lemma 5. Let V.(n Zo) denote an (n +
1)-dimensional irreducible [(2-, C)-module. For k,
1 Z>_o, the tensor product of two modules Vk and
V is a direct sum of min(k, /)+ 1 number of

2min(k’l)[(2 C)-modules as Vk @ V, "’i=o

Using this well-known lemma, we see that
(Bn) and (B,2) are 6- and 2-dimensional
spaces respectively for sufficiently large n and
that for some small n’s. dimensions of B, are
smaller than 8 6 + 2. Fix explicitly a basis of

en, and compute 0 on them. then we can obtain
the next table:

dim D.
dim Ker

_
dim Im 0.

/’+1 k’+2 R’+3 /’+4 /V+5 /V+6
1 2 4 7 8 8
1 2 2 5 4 4
0 2 2 4 4 4
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From this result, we have the following
proposition.

Proposition 6. Let A’-- (2’, c’) with 2’-- c"
Zo. Then dimensions of homology groups of irre-

ducible g-module I(A’) are
dim H(g, I(A’)) 1 (n 2’ + 1, 2’ + 4),

and 0 (otherwise).
CASE 2 --C--2 Z0. In this case,

V(A) - I(A’) with A"= (2’, c’) (2+1, c--
1), and I(A’)--i I; with I"--((2’--i)
(R) v + Y (R) v+ O < i < 2" + l> c and I"=
YIY. ( L(A). The calculations are similar and
we get the following.

Proposition 7. Let A’= (,’, c’) with
c’--2 Z>o. Then dimensions of homology

groups of irreducible module I(A’) are
dim H.(, I(A’)) 1 (n 2’, 2’ + 3),

and 0 (otherwise).
We get our main result for (2,1) from

these propositions and the duality in Lemma 2
and V(/, c)* V(/’, c’) with /’ ,- 1, c’:
--c-- 1 in case / c > 0 (and so /’4-c’+2

0).
Theorem 8. Let V(A) be a finite-dimensional

irreducible re#rsentation of g (2,1) with high-
est weight A- (/, c), / Zo, c C. Then, in
case/ c,

dim H, (g, V(A)) dim H (g, V(A))

1 (n=/,/ +3)
0 (otherwise).

In case 2 4- c4- 2 O,
dim H. (, V(A)) dim H" (, V(A))

[1 (n--2 + 1,/ +4)
0 (otherwise).

In case (2-- c)(2 + c+2) =/: 0,
I-I, (, V(A) 0 for any n.

The details for [ (2,1) will appear else-
where [10].
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