Computation of the Modular Equation

By Hideji ITO*)
Department of Mathematics, College of Education, Akita University
(Communicated by Shokichi IYANAGA, M. J. A., March 13, 1995)

1. Introduction. To each rational prime p, the basic elliptic modular function $j(z)$ gives rise to the modular equation

$$
\Phi_{p}(X, j)=0
$$

To be more explicit, the p-th modular polynomial $\Phi_{p}(X, j)$ is defined by

$$
\Phi_{p}(X, j)=(X-j(p z)) \prod_{i=0}^{p-1}\left(X-j\left(\frac{z+i}{p}\right)\right)
$$

It is a polynomial in X and $j(z)$ with rational integer coefficients. These coefficients are, in general, gigantic numbers for larger p and the explicit values of them are hard to determine. Classically, H. J. S. Smith computed them for $p=2,3$ (1878, 1879), Berwick [2] for $p=5$ (1916). In recent years, Herrmann [4] published the results up to $p=7$ (1975), and Kaltofen-Yui [5] gave the results for $p=11$ (1984). In a letter to the author dated December 3, 1992, Professor Yui informed us that the explicit forms of $\Phi_{p}(X, j)$ are known up to $p=31$.

The purpose of this note is to give a simple new algorithm to compute $\Phi_{p}(X, j)$. By using it, we have obtained explicit forms of them up to $p=53$. Also, we have discovered some remarkable properties of the coefficients of $\Phi_{p}(X, j)$, which may have some clues in the investigation of the so called Moonshine phenomenon of the Monster simple group.

We use Mathematica ver. 2 on Sony NEWS 3860 (a work station; 20 MIPS with 16 MB RAM memory).
2. Preliminaries. Our approach begins with the following well-known proposition:

Let $f(z)$ be a $S L_{2}(\boldsymbol{Z})$-modular function that is holomorhic on the upper half plane and let its q-expansion be

$$
\begin{array}{r}
f(z)=a_{-n} q^{-n}+a_{-(n-1)} q^{-(n-1)}+\cdots \\
\left(a_{i} \in \boldsymbol{Z}, q=e^{2 \pi \sqrt{-1} z}\right)
\end{array}
$$

[^0]Then $f(z)$ is a polynomial $F(j(z))$ in $j(z)$ with coefficients in \boldsymbol{Z}.

It is easy to give an algorithm to get $F(j(z)$) by recursive procedure. (See Lang [9], p. 54.)

We can rewrite the modular polynomial as follows:

$$
\begin{aligned}
& \Phi_{p}(X, j)=X^{p+1}+\sum_{i=1}^{p+1}(-1)^{i} s_{i}(j) X^{p-i+1} \\
& =X^{p+1}+j^{p+1}+\sum_{n, m=0}^{p} a_{n m} X^{n} j^{m} \quad\left(a_{n m} \in \boldsymbol{Z}\right)
\end{aligned}
$$

Here we mean by $s_{i}(j)$ the i-th fundamental symmetric function in

$$
j(p z), j\left(\frac{z}{p}\right), j\left(\frac{z+1}{p}\right), \ldots, j\left(\frac{z+p-1}{p}\right)
$$

which is evidently $S L_{2}(\boldsymbol{Z})$-modular and holomorphic on the upper half plane. So we have

$$
s_{i}(j)=S_{i}(j)
$$

for some polynomial $S_{i}(j)$ in $j(z)$ (with coefficients in \boldsymbol{Z}). We have to obtain the explicit forms of the $S_{i}(j)$. These matters are, of course, well known. But, in general, it is quite difficult to get the q-expansions of the $s_{i}(j)$ explicitly. (Except for $i=1$. In this case $s_{1}(j)=j(p z)+j(z / p)+$ $\cdots+j((z+p-1) / p)=q^{-p}+744(p+1)+$)

Herrmann [4] took the way of reducing q-expansions of the s_{k} modulo various primes and using an estimate of the coefficients plus the Chinese remainder theorem he recovered the values.

Kaltofen-Yui [5] took a different view point. They started with the equation $\Phi_{p}(j(p z), j(z))=$ 0 . Substituting the q-expansions of $j(z)$ and $j(p z)$, they got a system of linear equations in the $a_{n m}$, which has some special features suitable for solving.
3. Our method. The key point of our method lies in the use of power sums and the Newton formula applying for $j(z / p), j((z+1) /$ $p), \ldots, j((z+p-1) / p)$ (note that we treat $j(p z)$ separately).

We put

$$
\begin{aligned}
& t_{1}= j\left(\frac{z}{p}\right)+j\left(\frac{z+1}{p}\right)+\cdots+j\left(\frac{z+p-1}{p}\right) \\
& t_{2}= \sum_{\substack{0 \leq n<m \leq p-1}} j\left(\frac{z+n}{p}\right) j\left(\frac{z+m}{p}\right) \\
& \vdots \\
& t_{k}= \text { the } k \text {-th fundamental symmetric function of } \\
& j\left(\frac{z}{p}\right), j\left(\frac{z+1}{p}\right), \ldots, j\left(\frac{z+p-1}{p}\right) \\
& \vdots \\
& t_{p}= j\left(\frac{z}{p}\right) j\left(\frac{z+1}{p}\right) \cdots j\left(\frac{z+p-1}{p}\right)
\end{aligned}
$$

Also we put $t_{0}=1, t_{p+1}=0$. Then we have

$$
s_{k}=j(p z) t_{k-1}+t_{k}(1 \leq k \leq p+1)
$$

Let the q-expansion of $j(z)$ be as follows:

$$
j(z)=\frac{1}{q}+c_{0}+c_{1} q+c_{2} q^{2}+\cdots \quad\left(c_{i} \in Z\right)
$$

Then we have

$$
\begin{aligned}
& j(p z)=\frac{1}{q^{p}}+c_{0}+c_{1} q^{p}+c_{2} q^{2 p}+\cdots \\
& j\left(\frac{z+i}{p}\right)^{2}=\frac{1}{\zeta^{i} q^{1 / p}}+c_{0}+c_{1} \zeta^{i} q^{1 / p}+ \\
& c_{2} \zeta^{2 i} q^{2 / p}+\cdots \quad\left(\zeta=e^{(2 \pi \sqrt{-1}) / p}\right)
\end{aligned}
$$

To get $S_{k}(j)(=$ the polynomial expression of $s_{k}(j)$ in j), we need the q-expansions of the $s_{k}(j)$ up to the constant term. So we must have the q-expansions of the $t_{k}(j)$ up to the p-th power of q. To compute them, we introduce the k-th power sum u_{k} of $j(z / p), \ldots, j((z+p-1) / p)$:

$$
\begin{gathered}
u_{k}=j\left(\frac{z}{p}\right)^{k}+j\left(\frac{z+1}{p}\right)^{k}+\cdots+ \\
j\left(\frac{z+p-1}{p}\right)^{k}(1 \leq k \leq p)
\end{gathered}
$$

Their q-expansions can be obtained from that of $j(z)^{k}$. In fact, let

$$
j(z)^{k}=\sum_{n=-k}^{\infty} c_{k}(n) q^{n}
$$

Then we have the following proposition.

Proposition 1.

$$
\begin{aligned}
& u_{k}=p \sum_{n=0}^{\infty} c_{k}(p n) q^{n} \quad(1 \leq k \leq p-1) \\
& u_{p}=p\left(\frac{1}{q}+\sum_{n=0}^{\infty} c_{p}(p n) q^{n}\right) \quad(k=p)
\end{aligned}
$$

Proof. See, for example, Lehner [7], p. 138.
The Newton formula enables us to get recursively the q-expansions of the t_{k} :

$$
\begin{aligned}
& t_{1}=u_{1} \\
& t_{2}=\frac{-1}{2}\left(u_{2}-u_{1} t_{1}\right)
\end{aligned}
$$

$$
t_{3}=\frac{1}{3}\left(u_{3}-t_{1} u_{2}+t_{2} u_{1}\right)
$$

Since the t_{k} and the $\boldsymbol{u}_{\boldsymbol{k}}(k<p)$ have no polar term and we need the q-expansions only up to the p-the power of q, above calculations are in effect polynomial calculations. Only t_{p} has polar term $1 / q$.

In this way, we obtain the q-expansions of the s_{k} up to the constant term and by the well-known method explained in section 2 we get the $S_{k}(j)$.

Although in a different context, power sums and the Newton formula already appeared in modular function theory (Watson [10], Lehner [7, 8]).
4. Two remarks. We make two remarks concerning the actual programming.

1. The values of c_{n}.

We use the following formula of $D . H$. Lehmer (Lehmer [6], Apostol [1], p. 93):

$$
\begin{aligned}
& \frac{65520}{691}\left\{\sigma_{11}(n)-\tau(n)\right\}= \\
& \tau(n+1)+24 \tau(n)+\sum_{k=1}^{n-1} c_{k} \tau(n-k)
\end{aligned}
$$

Here $\tau(n)$ is Ramanujan's tau function and $\sigma_{11}(n)=\sum_{d \mid n} d^{11}$. As $\tau(n)$ is a built-in function in Mathematica, this seems the easiest way for us.

2. The computation of $c_{k}(n)$.

The computation of $c_{k}(n)$ ($=$ the coefficient of q^{n} in the q-expansion of $\left.j(z)^{k}\right)$ up to $n=p^{2}$ took most of our computer time. As we need $j(z)^{k}$ for whole $1 \leq k \leq p$, we proceed in an iterative way. Multiplying $j(z)$ by q, we can treat it as a polynomial in q. Let

$$
f(q)=\sum_{i=0}^{n} a_{i} q^{i}, g(q)=\sum_{i=0}^{n} b_{i} q^{i} \quad\left(a_{i}, b_{i} \in Z\right)
$$

We want to compute $f(q) g(q) \bmod q^{n+1}$ efficiently. Since the polynomial multiplication takes much time and need considerable memory, we actually did it as a list operation.
5. Some properties of $a_{n m} / p(\bmod p)$. Recall the Kronecker congruence relation:

$$
\Phi_{p}(X, j) \equiv\left(X^{p}-j\right)\left(X-j^{p}\right)(\bmod p)
$$

In terms of the coefficients $a_{n m}$, this means

$$
a_{n m} \equiv 0(\bmod p)
$$

except for $a_{11} \equiv a_{p p} \equiv-1(\bmod p)$.
In this section, we consider $a_{n m}\left(\bmod p^{2}\right)$.
Proposition 2. Suppose $p \leq 11$. If $n m \neq$ $0(\bmod p)$ and $(n, m) \neq(1,1)$, then we have

$$
a_{n m} \equiv 0\left(\bmod p^{2}\right)
$$

Proof. By Lehner's theorem [7, 8], we have $c_{k}(p n) \equiv 0(\bmod p),(p \leq 11)$
for every integer n. Hence the algorithm explained in section 3 together with Proposition 1 gives the assertion.

When $13 \leq p \leq 23$, we observe $a_{n m} \not \equiv 0$ $\left(\bmod p^{2}\right)$ for all n, m. When $p \geq 29$, there are cases where p^{2} divides $a_{n m}$. For example, when $p=29$, we have $a_{1,26} \equiv 0\left(\bmod 29^{2}\right)$.

At any rate, since we have $a_{n m} \equiv 0(\bmod p)$ (except for $(n, m)=(1,1),(p, p)$), we are led to consider the behavior of $a_{n m} / p(\bmod p)$, and found some remarkable phenomenon.

Fact 1. Suppose $0<n_{i}, m_{i}<p,\left(n_{i}, m_{i}\right) \neq$ $(1,1) \quad(i=1,2)$. If $\quad n_{1}+m_{1} \equiv n_{2}+m_{2}(\bmod$ $p-1)$, then we have

$$
a_{n_{1} m_{1}} / p \equiv a_{n_{2} m_{2}} / p(\bmod p)
$$

for $p \leq 31$ or $p=41,47,59,71$. And for other $p \leq 2617$, these congruences don't hold (at least for some pair of indices).

Though we have gotten exact values of the $a_{n m}$ only up to $p=53$, what we need to verify the above fact is their values modulo p^{2}. So it becomes possible to check for $p=59,71$. For other p, what we actually checked is $a_{p-1, p-3} \not \equiv$ $a_{p-2, p-2}\left(\bmod p^{2}\right)$. When this doesn't hold, then we next checked whether $a_{p-1, p-4} \not \equiv a_{p-2, p-3}$ $\left(\bmod p^{2}\right)$. (This requires only the q-expansion of $j(z)^{2}\left(\bmod p^{2}\right)$ up to the term $q^{3 p}$.)

Fact 2. Suppose $p=13,17,19$ or 31 . Then to each $n(2 \leq n \leq p-1)$, the $a_{n m} / p(\bmod p)$ (1 $\leq m \leq p-1$) repeat themselves the following values:

$$
\begin{array}{ll}
\{8,12,5,1\} & \cdots \\
\text { if } p=13 \\
\{2,13,8,1,15,4,9,16\} & \cdots \\
\text { if } p=17 \\
\{7,1,11\} & \cdots \\
\{7,1,27,24,3\} & \cdots
\end{array}
$$

When $n=1$, then the same thing occurs but the range of m has to be changed to $2 \leq m \leq p$.

This seems to show that there is certain period f with the values of $a_{n m} / p(\bmod p)$. As f
divides $p-1$ in the above four cases, one might expect $f=p-1$ for other values of $p(p=$ $23,29,41,47,59,71$). Also above examples sug. gest various relations among the values (such as $8+5=12+1=13$ in case $p=13$, etc.)

The primes $p \leq 31, p=41,47,59,71$ are exactly the primes that divide the order of the Monster simple group (cf. Conway-Norton [3]), which are at the same time equal to the primes for which the function field determined by the normalizer of $\Gamma_{0}(p)$ has genus 0 . Up to present, the modular equation has played no part in the investigation of the Moonshine phenomenon. It seems to the author that it will deserve further study.

References

[1] T. M. Apostol: Modular Functions and Dirichlet Series in Number Theory. Springer (1976).
[2] W. E. H. Berwick: An invariant modular equation of the fifth order. Quart. J. Math., 47, 94-103 (1916).
[3] J. H. Conway and S. P. Norton: Monstrous moonshine. Bull. London Math. Soc., 11, 308-339 (1979).
[4] O. Herrmann: Über die Berechung der Fouriercoefficienten der Funktion $j(\tau)$. J. Riene Angew. Math., 274, 187-195 (1975).
[5] E. Kaltofen and N. Yui: On the modular equation of order 11. Proc. of the 1984 MACSYMA User's Conference, 472-485 (1984).
[6] D. H. Lehmer: Properties of the coefficients of the modular invariant $J(\tau)$. Amer. J. Math., 64, 488-502 (1942).
[7] J. Lehner: Divisibility properties of the Fourier coefficients of the modular invariant $j(\tau)$. Amer. J. Math., 71, 136-148 (1949).
[8] J. Lehner: Further congruence properties of the Fourier coefficients of the modular invariant $j(\tau)$. Amer. J. Math., 71, 373-386 (1949).
[9] S. Lang: Elliptic Functions. Addison-Wesley (1973).
[10] G. N. Watson: Ramanujans Vermutung über Zerfâllungsanzahlen. J. Riene Angew. Math., 179, 97-128 (1938).

[^0]: *) Partially supported by Grant-in-Aid for Scientific Research (No. 05640245), The Ministry of Education, Science and Culture, Japan.

