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§1. Introduction. Throughout this paper
let C = C U {o} be the Riemann sphere and
R :C— C be a rational map of degree d = 2.
Periodic orbits are one of the most important ob-
jects to study in the theory of dynamical systems.
By definition a point 2, is an #-periodic point if

n
R"(z) :=R-° - ° R(z) = 2,

and R*(z,) # z,for k < n
and we call the set {z,, R(z), R*(z),..., R"™"
(z,)} an n-periodic orbit. It is a fundamental prob-
lem to ask if there exists at least one #-periodic
orbit of R for each natural number #n, or
equivalently, in which case rational maps fail to
have #m-periodic orbits for some #. For this prob-
lem the following result is well known.

Theorem ([1]). Let R be a rational map of de-
gree d = 2. If R has no n-periodic orbit, then the
pair (d, n) is either (2,2), (2,3), (3,2) or (4,2).
From this theorem one can say that “most”ration-
al maps have at least one #-periodic orbit for
any # and a rational map which does not satisfy
this property is rather “exceptional”. In [1] Baker
also constructed concrete examples for each pair
of (d, n) above to show that the exceptional
maps really exist. Now, how many kinds of such
maps exist ? In this paper we answer this ques-
tion, that is, we investigate whole these excep-
tional rational maps and completely classify them
up to the conjugation by Mobius transformations.
Also we give an inequality that holds among the
numbers of #-periodic orbits and give a lower
estimate of the number of p-periodic orbits in the
case where p is prime.

For the definitions of the concepts we do not
mention here, see for example [2].

§2. Normal forms and a key lemma. In
order to classify all the exceptional rational
maps, it is sufficient to determine all the conjuga-
cy classes and give each representative element.
For this purpose we construct normal forms for
each d(= 2,3, or 4) and find the representatives

in it. If R is an exceptional rational map, all the
2-periodic orbits (or 3-periodic orbits in the
case of (d, n) = (2,3)) are considered to be de-
generate to some fixed points (or equivalently
1-periodic orbits). Therefore it is convenient to
construct normal forms which specify some fixed
points. Since one can easily see that each excep-
tional rational map has at least two distinct fixed
points, we may assume that O and © are such
points by the conjugacy of the Mobius trans-
formation which maps these two distinct fixed
points to 0 and oo . With one more suitable
Mobius transformation for each cases, we obtain
the following normal forms. Here, for example,
m(0; R) denotes the multiplier of R at the fixed
point z = 0.

Proposition. Every rational map of degree 2,
3, or 4 which admits at least two distinct fixed
points is conjugate to the following normal forms, re-
spectively.

2
@) d=2 RG =5a;:—llf—, a=m(o;R),
=m(0; R).

3 2
(i) d=3 R@ = Z_ZLM
az’'+ bz+ 1
e=m(0; R).
2+ e’ +fz2 + gz
az’ + b2+ cz+ 1’

a=m(o;R), g=m0;R).

The next lemma is a key for solving our
problem.

Lemma. Suppose that R(z,) = z, Let mul(z,;
R) denotes the multiplicity of the fixed point z = gz,
For a fixed natural number n,
() if {m(z,; R)}" # 1, then mul(z,; R) = mul(z,;
R").
In the case of {m(z,; R)}" =1,
(i) if m(zy; R) = 1, then mul(z,; R) = mul(z,;
R™ > 1.
(iii) If m(zy; R) is a primitive t-th root of umity,
then t|m and mul(zy; R) =1 and mul(z,;

= m(©; R),
(ii) d=4 R =
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R™) = kt+ 1 for some k € N.

§3. Main results. Using the normal forms
in the Proposition and the Lemma, we can prove
the following theorem.

Theorem 1. Awny exceptional rational map is
congugate to one of the following rational maps by a
suitable Mobius transformation.

(1) d, n) = (2,2) ,

2 — 2

Rl(z;a)=a——-1 (a# — 1),

moduli space = (C\{— 1})/. = C.
(2) d, n) = (2,3)
(i) (1 + 1+ 7)-type

2 2 2
+
Rz(z)=—zﬂ-z—, R,(2) = o wz :
w+5 + w2+5
w—12T1 2z +1
w —1
—1+y/=3
wherea)=‘—2—_.
(i) (1 + 4+ 4)-type
2 2 2
_ 2+ w:z 2 twz
R,(2) = vz F 1 R (2) iz + 1
(3) d, n) = (3,2)
i I+1+1+ D-type
22+t —z
Ri(z;¢0) = (c #0),

(=12 —2cz+1

moduli space = (C\{0})/. = C\ {0}.
(i) (14 1+ 3+ 5)-type

3

Rz;bp)=—72—2% b + 0),
—z +bz+1

moduli space = (C\{0})/_ = C\ {0}.
(iii) (1 + 3+ 3+ 3)-type

3, 4 2
z+bz 2

R,(z;b) =

5 @®#0, =29,
-2 +bz+1

moduli space = (C\{0, £ 21})/. = C.
4 d, n) = 4,2
i) I+ 1+1+ 1+ 13)-type
4
' — 2z
R,(2) = ———.
? -2 41
(i) I+ 1+ 1+ 5+ 9-type
4 3 2
z2 vtz +z2—2z
R,,(2) = .
1 -2 +27-32+1
Gil) (1 + 1+ 54 5+ 5)-type
2+el+ b —z

R (Z) = ’
. — 22+ b+ ezt 1
where b, = 3—+2£, 50 = §—2_\/§_,
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—5—vV5 _ _ —5+45
Co = 3 , Co = 3 .
(iv) (I + 3+ 3+ 3+ 7)-type
4 13 2
z — 3% + 332" — 2z
3 4, _1 :
— 2z +3% —5-33%2+1
Here, by a moduli space of a parameter space we
mean a space obtained by taking the quotient of
the parameter space with the following equiva-
lence relation:
a~a © R(z;a)is conjugate to R(z;a’)
by a Mébius transformation.
As for the definition of the type, we will explain
below.

Outline of the proof. Here we only sketch the
outline of the proof of (1) and (2). The case (3)
and (4) can be proved by the same method with
much more tedious and complicated calculation.

(1) Since, generally, R has d+ 1 fixed
points with counting multiplicity, R has three
and R’ has five fixed points in this case. Among
these five fixed points of Rz, generically, two of
them are not fixed points of R and the set con-
sisting of these two points is a unique 2-periodic
orbit of R. If R has no 2-periodic orbit, then the
unique 2-periodic orbit is degenerate to a fixed
point. We may assume that z = 0 is such a point
without loss of generality. Then by the Lemma
we have b = m(0; R) = — 1 in the normal form
and since d =2 we have a # — 1. Thus R,(z; @)

zZ —z . .
=z F1 (@ # — 1) are the desired rational

R, (2) =

maps.
Next we compute the moduli space. All the

fixed points of R(z;a) are 0, © , and =2

(when @ = 1 this point is equal to ©° and mul(o ;
R) = 2) and their multipliers are — 1, @, and
3—a

1 F o respectively . If R(z;a) ~ R(z; a’), then
since the multipliers are invariant by a conjuga-
tion with Mébius transformations, we have

= ,_3—a ,_.
a =aora = 1_,_a(—-g(a)).

It is easy to see that R(z;a) ~ R(z; @) if
and only if @ and @’ are related as above. Since
g-g = 1d, taking the quotient by the action of the
group G := {id, g}, the moduli space is

(c\{—1h/G=_c.

(2) A rational map of degree 2 generically
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has three fixed points and two 3-periodic orbits.
But since R has no 3-periodic orbit, each of two
orbits is degenerate to a certain fixed point.
There are two cases to consider, one is that these
two orbits are degenerate to a same fixed point,
say 2z = 0, and the other is that these orbits are
degenerate to distinct fixed points, say 2z = 0 and
Z = oo, Since the multiplicity of the degenerate
fixed point of R® is 3k + 1 for some k € N by
the Lemma and R’ has nine fixed points, mul(0 ; R)
=1 and mul(0; R’) = 7 for the former, and
mul(0; R) = mul(°;R) =1 and mul(0; R
= mul(o° ; R®) = 4 for the latter. We call such
R (1 + 1+ 7)-type or (1 + 4 + 4)-type, re-
spectively. It is obvious that two different types
of rational maps are never conjugate each other.
(i) (1 + 1 + 7)-type: Suppose that mul(0;
R®) = 7, then the by Lemma we have b = @ :=

—1++/—3

——5 —_or ’. Assume that b = w, then
R%(z) = z+ B,z + -+ in a small neighborhood
of z= 0 and again by the Lemma it is necessary
and sufficient that 8, = 0. The value S, is de-
scribed by the value @ = m (o0 ; R) and we have

w+5
a=w20rw_1.Since d =2 we have a # &’

and the result follows. These two obtained
rational maps are not conjugate each other, be-
cause the sets of multipliers at the three fixed
points do not coincide.

(ii) (1 + 4 + 4)-type: Suppose that mul(0;
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appropriate. These two rational maps are not
conjugate for the same reason as in the case of (1
+ 1 + 7)-type. O

Remarks. (1) The essential point of
Theorem 1 lies in making clear how many kinds
of exceptional rational maps exist. The concrete
forms of the maps presented are not so impor-
tant. Apparently simpler f(irms could be obtained,

if desired. For example, is an exceptional

2P—1
rational map of (1 + 3 + 3 + 3 + 7)-type.

(2) In the case of (d, n) = (2,3), let 0(2) : = Z,
we have R, = 0°R,-0 ' (resp. R, = 6-R,°0 ).
Therefore the dynamics of R, and R, (reap. R,
and R;) are essentially the same, though both are
not holomorphically conjugate.

(3) In the case of (d, n) = (4,2), at a glance, it
seems that there is a possibility of existence of
other types of R, namely for example, (1 + 1 +
1+ 3+ 11)-type, (1 + 1+ 3+ 3+ 9)-type,
etc. But surprisingly these types of R never ex-
ist, although there exist all possible types of R
for the other three cases.

(4) As we mentioned in §1, Baker [1] constructed
examples of exceptional rational maps for each
pair of (d, n). The correspondence between them
and our normal forms is the following. In Table I,
if the conjugacy is ¢(2) and the normal form is
R(2) then ¢ * R ¢ '(2) is equal to the corres-
ponding Baker’'s example. (Note that there is a
miss print in the Baker’s example for the case

) = ; R%) = — z2(1 + 27°
R”) = mul(co ; R”) = 4, then by the Lemma we d, n) = (4,2). His example was z(1 32)
have o 1 — 3z
Ei_n(O B, m(;o ; 5)) 2 2 but it seems that this is —_z(l_-i-_z).)
= (v, w), (0, ®), (@, W), or (w, @). 1— 27°
Since d =2, only (w, ) and (&, %) are

Table 1
d, n) Baker’s example Type Normal Form Conjugacy
(2,2) 22—z (1+1+3) R,(z;0) id
2
22 —1 z+1
23) | 2+ (=1 5 1+ 4+ 4) R,(2) -3
2 z 2 z+1
(3,2) — + 5 1+3+3+3) R, (z; — 2w —_—
3z 3 ’ z+ o’
1
— 21+ 2 28
(4,2) 2( f) ? 1+3+3+3+7 Ry, (2) £
1 - 22 z— 3§
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Let N,(m) be the number of m-periodic
orbits of the rational map R of degree d = 2
with counting multipliczity. If R is exceptional, for

zZ —z
example R(z;a) := ZF1 (@ # — 1) as in the

az

case of (d,n) = (2,2), we have N,(2) =0
although N,(2) = 1 generically. If R is not ex-
ceptional, however, it always holds that
N,(m) =1 by the Baker’s theorem. That is, no
matter how much R is degenerate compared with
the generic case, N,(m) never be 0. Then how
can we estimate N,(m) from below ? For this we
have the following.

Theorem II.

d'—d— X mN,(m) <2(d— Dn.

i<m<n
mln
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In particular when n = p with p being prime, we
have,
& —d
p

Remark. Generically N,(p) =

—2(d— 1)< N,(p). O
da —d
?

2(d — 1) is a number of critical points of R with
counting multiplicity.
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