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1. Introduction. In this paper we con- L V (-% oo,/ F(Ko, ,).
tinue the investigation of the restriction of irre- Suppose X is a K-module (possibly, of infi-
ducible unitary representations of real reductive nite dimension)which carries an algebraic action
groups, with emphasis on the discrete decomposa- of K. The K0-multiplicity function of X is given
bility. We recall that a representation r of a by
reductive Lie group G on a Hilbert space V is m mx" L fl C--* N U oo,
G-admissible if (, V) is decomposed into a dis- m() dim Homo(F(Ko, ), X).
crete Hilbert direct sum with finite multiplicities The asymptotic K-support T(X) C was intro-
of irreducible representations of G. The same ter- duced in [3] as follows"
minology is used for a (fl, K)-module on a pre- S(X) "= {, L f) C’mx(,) 0},
Hilbert space, if its completion is G-admissible. T(X) {, C" V f S(X) is not relatively

Let H be a reductive subgroup of a real re- compact for any open cone Vcontaining }.
ductive Lie group G, and (r, V) an irreducible Hereafter we assume a growth condition on
unitary representation of G. The restriction (rClH, mx there are constants A, R > 0 such that
V) is decomposed uniquely into irreducible unit- (2.1) mx(/) A exp(R[/ [) for any/ L N (.
ary representations of H, which may involve a This condition assures that the character of the
continuous spectrum if H is noncompact. In representation X is a hyperfunction on K, whose
[5],[6], we have posed a problem to single out the singularity spectrum we can estimate in terms of
triplet (G, H, re)such that the restriction of T(X).
(rClH, V)is H-admissible, together with some ap- Suppose H is a closed subgroup of K. Let
plication to harmonic analysis on homogeneous prK_.H t*-- D* be the projection dual to the in-
spaces. The purpose of this paper is to give a clusion of Lie algebras t f. Put D +/-

"=

new insight of such a triplet (G, H, r)from Ker(prK_m’t*--. t*). We set
view points of algebraic analysis. In particular, (2.2) ((t) ( f3 Ad*(K)t +/- c v/- 1 (t)*.
we will give a sufficient condition on the triplet Note that () {0} and ((0) (.
(G, H, r) for the H-admissible restriction as a Theorem 2.3. Let X be a K-module saris-
generalization of [5],[6] to arbitrary H, and also fying (2.1). If a closed subgroup H of K satisfies
present an obstruction for the H-admissible res- T(X) N (D) {0},
triction, then the restriction XIH is H-admissible.

2. A sufficient condition for discrete de- Now, let us apply Theorem (2.3) to some
eomposability. Let K be a compact Lie group. We standard (, K)-modules. Suppose that G is a
write t0 for the Lie algebra of K, and for its real reductive linear Lie group and that K is a
complexification. Analogous notation is used for maximal compact subgroup of G. A dominant ele-

cother groups. Take a Cartan subalgebra o of 0. rnent a v 1 o defines a 0-stable parabolic
The weight lattice L in v/- l(t)* is the additive subalgebra q 4- u, where [, u are the sum of
subgroup of v/- 1 (t)* consisting of differentials eigenspaces of ad(a) with 0, positive eigenvalues,
of the weights of finite dimensional representa- respectively. Let L be the centralizer of a in G.
tions of K. Let ’ c v/- 1 (t)* be a dominant Zuckerman introduced the cohomological para-
Weyl chamber. We write K0 for the identity com- bolic induction Yq (j .IV), which is a
ponent of K, and 00 for the unitary dual of K0. covariant functor from the category of metaplectic
The Cartan-Weyl theory of finite dimensional ([, (L VI K) ) -modules to that of (fi, K)-modules,
representations establishes a bijection" as a generalization of the Borel-Weil-Bott con-
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c
struction of finite dimensional representations of subalgebra o is also decomposed into a direct
compact groups. In particular, we write Aq(2) "= sum to (t)o + (t2)o.
()s(c) for a metaplectic unitary character C Corollary 2.7 (cf. [(5] Corollary 4.4" [4] Prop-
in the good range of parameter (see [8] Definition osition 4.1.3). In the setting as above, if a -2.5), where S :-dimc(u N ). Then Aq(2) is an stable parabolic subalgebra q is given by a
irreducible unitarizable (g, K)-module (see [7] (-:-l-(t)o, then the restriction () (W)lc,(j N)
Theorem 6.8), and we write Aq(/) for its is Kl-admissible for any finite dimensional recta-
completion, plectic (, (L N K)’)-module W.

The K-module structure of the alternating We note that Corollaries (2.(5),(2.7) are de-
sum -.(--1) () (W)IK is known as a general- duced from Corollary (2.5) by using (([3)-

c
ized Blattner formula (see [7] Theorem 6.34). Its V-- 1 o0 N 7, (t1) /-- 1 (t.)0 N C, respec-
proof also gives an upper estimate of each term tively.

() (W)tK, which leads us to: Remark 2.8. The above corollaries
Theorem 2.4. If W is a finite dimensional (2.4),(2.5),(2.6) are valid if we replace H by any

metaplectic (, (L ;3 K)’)-module, then the restric- reductive subgroup H’ containing H, because of
tion ()J (W)IK satisfies (2.1) and Corollary (1.3)in [6].
T(() (W)I)c R+(u N p) N ’ (j N). 3. A necessary condition for discrete de-

Here, we recall q + u (Levi decomposition) and eomposability. In 2, we have given a sufficient
t + p (Caftan decomposition), and we define a condition that the restriction of a (g, K)-module

closed cone by X has an H-admissible restriction with respect

R+ (u N p)"= nfl’n>-0)-(t)*, to a subgroup H. Conversely, we will find a
aeA (un

Corollary 2.5. In the setting of Theorem
(2.3), V

c(o) R+ {0},
then the restriction () (W)IH is H-admissible for
any finite dimensional metaplectic ([, (L K)")-
module W and for any j N. In particular,A, (/) IH
is decomposed discretely into irreducible unitary rep-
resentations of H.

As a special case of Corollary (2.5), we
obtain a new and unified proof of some of the
main results in [5],[6], where we imposed some
assumptions on a subgroup H.

First, suppose that H c K is a symmetric

necessary condition in terms of associated
varieties of g-modules in this section.

We recall that the associated variety of a (g,
K)-module X of finite length is defined by

V (X) --- v (X) Supps9 (dr (X))
as the support in of the associated graded
module dr(X)over the symmetric algebra S(g),
with respect to a good filtration (see [1]). It is
known that V(X)is a subset of the nilpotent
cone W* W* (g) c g

Let H be a closed subgroup that is reductive

in G. We fix a Cartan involution 0 of G which
makes H stable so that H N K is a maximal com-
pact subgroup of H. Write the projection PrV_.H

pair defined by an involution a Aut(K). Take *
a maximal abelian subspace o in {Y fo"

as before.
Theorem 3.1. Suppose X is a (, K)-module

a(Y) Y} and extend it to a Cartan sub-
algebra o of f0. We take a dominant Weyl cham-
ber C so that v/- la0 N C is also a dominant
Weyl chamber for the restricted root system
22 (t,

Corollary 2.6 (cf. [5] Theorem 1.2; [6]
Theorem 3.2). Retain the above setting. If

V/- I10.0 n ’ n R+<u n ,> {o},
then the restriction () (W)IH (j N) is H-
admissible for any finite dimensional metaplectic
([, (L K)’-)-module W.

Next, suppose K is (locally) isomorphic to a
direct product K Ke. We note that the Caftan

of finite length. Assume that the restriction XIH is

H-admissible. Let Y be any (D, H tO-module
occurring as a direct summand of X. Then we have

pr_H(*V (X)) c Vn(Y).
This theorem gives rise to an obstruction for

the admissibility of the restriction of a unitary
representation.

Corollary 3.2. Suppose X is a (g, K)-module
of finite length. Assume that the restriction XIH is

H-admissible. Then
prv_.u(Vv (X)) W* (D).

Applying Corollary (3.2) to X-A,(,), we
have:
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Corollary 3.3. Let us identify with via
the Killing form. Assume a O-stable parabolic sub-
algebra q q- u of satisfies

prv_.(Ad (Kc) (u V p)) t A/* ().
Then the restriction of Aq(2) G to H is not
H-admissible.

Remark 3.4. If H-- K, then the assumption
of Theorem (3.1) is always satisfied. In this spe-
cial case, Theorem (3.1) implies a well-known re-
sult pra_(a(X)) {0} (see [9] Corollary 5.13)
because the associated variety of a finite dimen-
sional representation is zero. In a general case
where H is non-compact, pra_H(/6(X))is not
necessarily {0}.

Finally, we mention a useful information ab-
out H occurring as direct summands of the res-
triction XIH, as an elementary application of
associated varieties. This helps us to understand
a strange phenomenon about the direct summands
occurring in the restriction of Aq()ln, which was
pointed out in [6] Introduction.

Theorem 3.5. Suppose X is an irreducible (,
IO-module. Assume that X is H-admissible. Let
Y1, Y2 be any irreducible (, H K)-module
occurring as a direct summand of the restriction X
to (, H N K). Then we have

/(Y,) v.(Y).
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