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Abstract: In this paper we shall prove two theorems: Firstly, a minimal flow is regular-
ly almost periodic if and only if it is almost automorphic and the dimension of the set of
eigenvalues is 1. Secondly, a minimal flow is pointwise regularly almost periodic if and only
if it is equicontinuous and the dimension of the set of eigenvalues is 1.

1. Introduction. Let X be a metric space
with metric dx. Z, Q, R and C denote the set of
integers, rational numbers, real numbers and
complex numbers, respectively. A continuous
mapping 7r" X x R-- X is said to be a flow on (a
phase space) X if 7r satisfies the following condi-
tions:

(1) 7r(x, 0) z for x s X.
(2) rc(rr(x, t), s) 7r(x, t + s)
forxsXand t, ssR.
For A c X and B c R, we denote the set {Tr(x,
t);x e A, t s B} by 7r(A, B). The closure of A
X is denoted by A. For xs X we denote the orbit
through xeX by O(X), that is, O(x) 7r(x,
R). M X is called an invariant set of rc if

O(x) M for each x s M. The restriction of 7r

to an invariant set M of rr is denoted by 7riM. A
non-empty compact invariant set M X is said
to be a minimal set of 7r if we have Or(x) M
for each xe M. If X is itself a minimal set of
we say that 7r is a minimal flow on X. 7r is said
to be equicontinuous if for each s > 0 there exists
a c > 0 such that dx(Tr(x, t), 7r(y, t)) < for
dx(x, y) < 6 and ts R.

Let 7r be a minimal flow on a compact metric
space X. xs X is called a regularly almost
periodic point if for each s > 0 there exists an
a> 0 such that 7r(x, na) s Us(x) for nsZ,
where U(x) {zsX;dx(x,z) <s}. The set
of regularly almost periodic points is denoted by
R(Tr). If R(Tr): , we say that 7r is regularly
almost periodic. If R(rc)= X, we say that 7r is
pointwise regularly almost periodic, x s X is said to
be an almost automorphic point if re(x, v,,)---’y as
n--- c for some sequence {%} R implies that
rr(y,- r,,)x as n---* co. The set of almost
automorphic points is denoted by A(rr). If

A(Tr) : b, we say that 7r is almost automorphic.
We can easily see that R(rr)and A(rr)are in-

variant sets of 7r. , R is said to be an eigenva-

lue of 7r if there exists a continuous mapping X:
X---’K= {sC;[ 1 1} such that X(rr(x,
t)) Z(x)exp(i,t) for xsX and ts R. In this

case, X is called an eigenfunction belonging to /.
The set of eigenvalues of 7r is denoted by A(Tr).
We can easily verify that A(Tr)is a countable
subgroup of the additive group R.

al, a., c R are said to be
rationally independent if rlc 4- r2% +
4- ’nOln O(ri s Q) implies rl r2

rn 0. We say that a countable subset A of R
has dimension n if there exist c, c

cns R, which are rationally independent, such
that we have a rcx + r.a. + +
r,,a,,(ris Q)for each a sA. The dimension of
A R is denoted by dim A.

In [4] regularly almost periodic minimal

flows are discussed for discrete phase group. In
this paper we characterize them for one para-
meter flows. In section 2 we shall show the fol-
lowing theorems.

Theorem 1. Let re be a minimal flow on a

compact metric space X. Then rr is regularly almost
periodic if and only if it is almost automorphic and
dimA(rr) 1.

Theorem 2. Let re be a minimal flow on a

compact metric space X. Then re is pointwise reg-
ularly almost periodic if and only if it is equiconti-
nuous and dim A (rr) 1.

[}2. Proofs of Theorems. In this section we
shall prove Theorems 1 and 2. In order to prove
them, we need several propositions.

Let 7r and p be flows on compact metric
spaces X and Y, respectively. A continuous map-
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ping h:X-- Y is said to a homomorphism from
to p if h(r(x, t)) p(h(x), t) for (x, t) sX
R. Furthermore, if h is a homeomorphism from X
onto Y, we say that h is an isomorphism from z to
p. In this case, we say that z and p are isomor-
phic. The following proposition is well known.

Proposition 2.1. Let and p be equiconti-
nuous m#ima! flows on compact metric spaces X
and Y, respectively. Then z and p are isomorphic
and only fA (r) A (p).

Proposition 2.2. Let r and p be minima!

flows on compact metric spaces X and Y, respective-
ly, and h a homomorpMsm from to p. Then xo
R(r) implies h (xo) e R (p).

Proof Easy.
Corollary 2.2.1. Under the assumption

Proposition 2.2, if and p are isomorphic, and if
is pointwise regularly almost periodic, then p is so.

Proof Easy.
Let By be the set of bounded and uniformly

continuous function from R to C. Define a metric
in By by dBv(f, g) sup{[ f(t) g(t)l} for

tsR

f, gs BU. Then By is a complete metric space.
We define a flow r/ on Bv by r/(f, t)= ft for (f, t)
s BU x R, where ft(s) f(t + s) for s s R. Then

is an equicontinuous flow on Bu. For f s
put O, (f) {ft} t H(f) and 7 ? H(f).
A set L c R is said to be relatively dense if there
exists a > 0 such that for each ts R we have [t

l, t+ /] CI L# . A complex valued function

f is said to be almost periodic if for each e > 0
there exists a relatively dense subset A c R
such that If(t+ v)--f(t)[< s for v sA and
tsR.

Proposition 2.3. Let f be an almost periodic

function. Then we have
(1) fe Bv and H(f) is compact.
(2) 7 is equicontinuous minimal flow on H(f).

() For each 2 s R, lim-}- f(s)exp(-- is)ds

exists.

Pt A 2 s R ;lim f(s)exp(-- i,s)

ds -0]. Then A(7)= ffl, where ffl is the least

additive sbgrop of containing

Proof. See [11.
Crllry 9..i].1. Let rc be an eqicontinos

minimal flow on a compact metric space X with

A (r) {2.}.0=, and Z a. < oo (a. C {0}).

Put f(t)- Z=a.exp(i2.t). Then f(t) is almost
periodic, and zc and 7 are isomorphic.

Proof Since A (rz) Az Az {2n}:=l
A(zc), the corollary follows from Proposition

2.1.
Proposition 2.4. Let zc be a minimal flow on a

compact metric space X. Then x R(zc) implies x
A(r), that is, a regularly almost periodic minimal

flow is almost automorphic.

Proof See [6], p. 337.
Proposition 2.5. Let zc be an almost automor-

phic minimal flow on a compact metric space X.
Then there exist an equicontinuous minimal flow p
on Y and a homomorphism h from zc to p such that
A(c) {xtX h-{(h(x)} {x}}. In this case
we have A (zc) A (p). Furthermore, if A (c) X,
then zc is equicontinuous.

Proof For the first statement, see [7], p.
737. For the second one, see [2], p. 151. The last
statement follows from the first one

Proposition 2.6. Let c be a minimal flow on a

compact metric space X. For o > 0 and x X, put
C(x) {To(x, na) n s Z}. If there exists a > 0
such that Ca (x) - X, then A(Tc) # {0}.

Proof See [1 ].
Proposition 2.7. Let 7c be a minimal flow on a

compact metric space X. We assume that C(x)
X for xcX and c > 0. Then there exists va > 0
satisfies following conditions"
(1) {s; r(x, s) C.(x)} {nz.}.z.

(2) C(x) C(x).
(3) y Ca(x) implies C, (y) Ca(y) Ca(x).

(4) 7r(C,(x) [ r r.])= X2’ 2

(5) For va t < t. < , we have zr(Ca(x)

t) fl rr(C(x), t) .
(6) For 0 < s < --, re(Ca(x), (-- s, e)) is open
in X and homeomorphic to Ca(x) (

Proof See [1].
Proposition 2.8. Let 7c be a minimal flow on a

compact metric space X. If xo R(Tc), then Ca(xo)- X for some a > O. Furthermore, if Ca(xo) - X,
for each neighborhood V(xo) of Xo, there exist m
Z(m > O) such that 7C(Xo, nmv,)
V(xo) for n Z, where va is the positive number in
Proposition 2.7.
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Proof The first statement is obvious. For 0

< e <--, put U: V(xo) f3 c(Ca(xo) (-,

)). Then U is a neighborhood of xo by Proposi-
tion 2.7. Hence, by the assumption, there exists p
> 0 such that 7r(Xo, rip)e U for n eZ. Since
(Xo, )e(C(xo), (-, )), there exist me
Z(m >0) and ueR(lu[ <) such that =
mv + . We assume u# 0, Choose leZ(l>
0) so that [lu[ < t and [(/+ 1)ul e. Since

we have (Ca(xo), (l+ 1)u) U= by Prop-
osition 2.7. On the other hand, (xo, (1 +
1)a) U(Xo, (l + 1)(m% + v)) =(=(Xo, (l +
1)mva), (l + 1)) e (C.(xo) (1 + 1)u). Since
(Xo, (l + 1)) U, this is a contradiction. Con-
sequently, mva that is (xo, nmva) e U

C.(xo) V(xo) C.(xo).
Prosition 2.9. Let be a regularly almost

periodic minimal flow on a compact metric space X.
If xo R() and Ca(xo) X ( > 0), then

Ca(xo) is 0 dimension at xo.

Proof For any neighborhood V’(xo)of xo,

we choose a neighborhood V(xo) of xo such that
V(xo) V’(xo). Then there exists m Z(m >
0) such that (Xo, nmv) e V(xo) Ca(xo) for

n e Z by Proposition 2.8. Since Cmr.(Xo)
V" (xo) Ca (xo), Cmr. (Xo) is closed in Ca (xo)
On the other hand, for sufficient small e > 0,
(Cmr(Xo), (-- e, e)) V’(xo) is open in X by

Proposition 2.7. Hence Cr.(xo) (Cr.(xo)
(- e, e)) Cq(xo) is open in Ca(xo) Conse-
quently, Ca(xo) is 0 dimension at Xo.

Corollary 2.9.1. Let be a pointwise regular-
ly almost periodic minimal flow on a compact metric
space X. Then, if Ca(x) X for x t X and > O,
then Ca(x) is 0 dimension, that is, it is totally dis-

connected.

Proof If y e Ca(x), then Ca(y) Ca(x) by

Proposition 2.7. Hence, since y e R(), Ca(y) is

0 dimension at y. This implies that Ca(x) is 0

dimension at every point in Ca(x). Hence Ca(x)
is 0 dimension.

Corollary 2.9.2. Let be a regularly almost
periodic minimal fl on a compact metric space X.
If Xo e R(), then X is 1 dimension at xo.

Proof Choose a> 0 so that Ca(xo) X.
For a sufficient small e > 0, 7r(C,(Xo) (- ,
)) is open in X and homeomorphic to Ca(xo)
(-- , e) by Proposition 2.7. Hence, since Ca(xo)
is 0 dimension at xo, X is 1 dimension at x0 ([5],
p. 33).

Proposition 2.10. Let 7r be an equicontinuous
minimal flow on a compact metric space X. If
R(Tr) , then R(Tr) --X, thai is. it is pointwise

regularly almost periodic.

Proof. Let Xo e R(Tr). Given e > 0, there ex-
ists a 6 0 such that dx(x, y) 0 and teR

implies dx(Tr(x, t), 7r(y, t)) < - For 0 < 0

<-, there exists a > 0 such that dx(xo, 7r(xo,

na)) < for n e Z. Since 7r is minimal, for xe X
there exists s e R such that dx(x, 7r(Xo, s)) < 6.
For this cr we have

dx (x 7r (x nor))- dx(x, rC(Xo, s)) + dx(u(Xo, s), zc(zC(Xo, na), s))
+ dx (Tr (Xo, s), ha), re(x, ha)) < z
Hence x R(rc), that is, R(rc) X.

Proposition 2.11. Let be an equicontinuous
minimal flow on a compact metric space X. If dim

A(Tr)--1, then it is pointwise regularly almost
periodic.

Proof Let A(Tr)= {/]n}n=l, where /1 0

and 0(n 2), and [a[ < (asC-
{0}). Put f(t) a. exp(i.t) for ts R. By

=1

Corollaries 2.2.1 and 2.3.1 and Proposition 2.10,
it is enough to show that f is a regularly almost

eriodic oint of . Since dimA() 1,

there exists > 0 such that , for

2, ,..., where , qsZ are prime to each other.
Given s >0, we choose NsZ(N>O)so that

t 2Z a. < . Put a qqa qN.
N+I

Since exp(i) exp(2ipqqa q_q+
q) 1 for2 k NN, wehave

Na exp(i0 Na exp(i(t + ))

+ N a exp(i0 N a exp(i(t + ))
RN+I k+l
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k=N+l k=N+l

Hence f is a regularly almost periodic point of

Proof of Theorem 1. Assume that R(Tr) # b.
Then A(Tr) # b, since R(Tr) c A(Tr) by Proposi-
tion 2.4. Hence 7r is almost automorphic. By
Propositions 2.6. and 2.8, we have A(r) # {0}.
To prove dimA(Tr)= 1, we assume that there
exist 21 22eA(Tr)which are rationally indepen-
dent. Let ZI and Z2 be eigenfunctions belonging

to 21 and 22, respectively. Define a flow 0 on

T2- K K by p((e1, e2), t) (elexp(i21t),
Tse2exp(i22t)) for (1, 2) e and t e R. Then p is

7 2"an equicontinuous minimal flow on Define a

mapping h X-- T by h(x) (Z,(x), Z2(x)).
Then h is a homomorphism from r to p. Since, if

x0e R(r), we have h(Xo)e R(p)by Proposition
2.2, T is dimension at h(xo)by Corollary

T2.9.2 This is a contradiction, because is
obviously 2 dimension at h(xo). Hence dimA(z)

1.
Conversely, we assume that A(z)4= b and

dim A(r) 1. Then there exist an equiconti-
nuous minimal flow p on Yand a homomorphism
h from 7r to p such that A(Tr) {x;h-1

{(h(x)}) {x}} by Proposition 2.5. In this case,
since dim A (Tr) dim A (p) 1 and p is
equicontinuous, is pointwise regularly almost
periodic by Proposition 2.1 1. The restriction of h
to A(Tr) is a homeomorphism from A(r) to
h(A(Tr)) with respect to the relative topology, be-
cause h is injection and continuous. For x eA(Tr),
let V(x)be an open neighborhood of x. Then
h (V(x) A(Tr)) h (V(x)) h (A(x’)) is open
in h(A(r)) with respect to the relative topology.

Hence there exist an open set U of Y such that U
f"l h(A())- h(A(r) f"l V(x)). Since p is reg-

ularly almost periodic, there exist c > 0 such
that p(h(x), no) e U(n e Z). Since p(h(x), no)

h(r(x, ha)) (neZ) and h(A(r)) is an in-
variant set of p, we have p(h(x), no)
h(A(’)) h(V(x) f"l A()). Consequently, r(x,
na) e A (Tr) ,f3 V(x) (n e Z). This implies x e R (Tr).
Hence 7r is regularly almost periodic.

Proof of Theorem 2. We assume that 7r is

pointwise regularly almost periodic. Then X
R(r) c A(Tr) means A(Tc)- X. Hence 7r is

equicontinuous by Proposition 2.5. Furthermore,
dim A(Tr) 1 follows from Theorem 1. The con-

verse is Proposition 2.11.
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