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Abstract:

In this paper we shall prove two theorems: Firstly, a minimal flow is regular-

ly almost periodic if and only il it is almost automorphic and the dimension of the set of
eigenvalues is 1. Secondly, a minimal flow is pointwise regularly almost periodic if and only
if it is equicontinuous and the dimension of the set of eigenvalues is 1.

§1. Introduction. Let X be a metric space
with metric dy. Z, @, R and C denote the set of
integers, rational numbers, real numbers and
complex numbers, respectively. A continuous
mapping 7 : X X R— X is said to be a flow on (a
phase space) X il 7 satislies the [ollowing condi-
tions:

(1) n(r,0) =xlorxeX.

(2) n(r(x, 1), s) = n(x, t+ s)
forxeXand t, seR.

For A € X and B C R, we denote the set {m(x,
t);xeA, te B} by (A, B). The closure of A C
X is denoted by A. For xe X we denote the orbit
through xe X by 0,(X), that is, O0,(x) = n(x,
R). M C X is called an invarianl sel of m if
0,(x) © M for each x& M. The restriction of 7
to an invariant set M of 7 is denoted by 7| M. A
non-empty compact invariant set M < X is said
to be a minimal sel of w if we have O,(x) = M
for each xe M. If X is itsell a minimal set of T,
we say that 7 is a minimal flow on X. 7 is said
to be equicontinuous if for each ¢ > 0 there exists
a 0 > 0 such that dy(z(x, t), n(y, ) <e for
dy(x, y) < dand teR.

Let 7w be a minimal flow on a compact metric
space X.xeX is called a regularly almost
periodic point if for each & > 0 there exists an
a >0 such that w(x, na)e U/ (x) for neZ,
where U, (x) = {ze X ;dy(x, 2) < ¢€}. The set
of regularly almost periodic points is denoted by
R(m). If R(xw) * ¢, we say that m is regularly
almost periodic. If R(x) = X, we say that 7 is
pointwise regularly almost periodic. x € X is said to
be an almost automorphic point if w(x, 7,) — y as
n— oo for some sequence {r,} C R implies that
n(y, — t,) = x as n— % . The set of almost
automorphic points is denoted by A(w). If

A(r) = ¢, we say that m is almosl aulomorphic.
We can easily see that R(x) and A(w) are in-
variant sets of . A ¢ R is said to be an eigenva-
lue of m if there exists a continuous mapping X, :
X—K=1{€ecC;|&| =1} such that yx,(n(x,
D) = x,(@)exp(dh) for xeX and te R. In this
case, X; is called an eigenfunclion belonging lo A.
The set of eigenvalues of m is denoted by A(m).
We can easily verify that A(xw) is a countable
subgroup of the additive group R.

Oy Ogy oo e e e , @, ¢ R are said to be
ralionally independent il o, + v, + ..o ...
+ r,a, = 07, Q) impliesr, =7,= .........
= 7, = 0. We say that a countable subset A of R

has dimension n if there exist a;, &, ......... ,
a, € R, which are rationally independent, such
that we have a=na, +7ra, + ... ...... +

r,a,(r; € Q) for each aeA. The dimension of
A C R is denoted by dim A.

In [4] regularly almost periodic minimal
flows are discussed for discrete phase group. In
this paper we characterize them for one para-
meter flows. In section 2 we shall show the fol-
lowing theorems.

Theorem 1. Let m be a minimal flow on a
compact metric space X. Then 1 is regularly almost
periodic if and only if it is almost automorphic and
dim A(n) = 1.

Theorem 2. Let w be a minimal flow on a
compact metric space X. Then T is pointwise reg-
ularly almost periodic if and only if il is equiconti-
nuous and dim A(x) = 1.

§2. Proofs of Theorems. In this section we
shall prove Theorems 1 and 2. In order to prove
them, we need several propositions.

Let m and o be flows on compact metric
spaces X and Y, respectively. A continuous map-
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ping h: X— Y is said to a homomorphism from T
to o if h(z(x, ) = ph(x), t) for (x, ) e X X
R. Furthermore, if 4 is a homeomorphism from X
onto Y, we say that & is an isomorphism from T to
0. In this case, we say that w and p are isomor-
phic. The following proposition is well known.

Proposition 2.1. Lel @ and p be equiconti-
nuous minimal flows on compact wmetvic spaces X
and Y, respectively. Then T and 0 are isomorphic if
and only if A(xw) = A(p).

Proposition 2.2. Let © and p be wminimal
flows on compacl melric spaces X and Y, respective-
ly, and h a homomorphism from 7 lo 0. Then X, ¢
R () implies h(x,) ¢ R(p).

Proof. Easy.

Corollary 2.2.1. Under the assumpiion in
Proposition 2.2, if T and p arve isomorphic, and if T
1s pointwise regularly almost periodic, then o is so.

Proof. Easy.

Let By be the set of bounded and uniformly
continuous function from R to C. Define a metric
in By by dp(f, & = S:El?{lf(t) —g® |} for

f, ge By. Then By is a complete metric space.
We define a flow 5 on By by n(f, ) =f, for (f,?)
e By X R, where f,(s) = f(t + s) for se R. Then
7 is an equicontinuous flow on By. For fe By,
put 0,(f) = {f} ;s = H(f) and n,= 0| H(f).
A set L C R is said to be relatively dense if there
exists a [ > 0 such that for each te R we have [t
— 1, t+ 1 NL=>¢ A complex valued function
f is said to be almost periodic if for each ¢ > 0
there exists a relatively dense subset A, C R
such that | f(t+ 1) — f(® | < e for te A, and
te R.

Proposition 2.3. Let f be an almost periodic
Sfunction. Then we have
(1) fe By and H(f) is compact.

(2) mny, is equicontinuous minimal flow on H(f).

t
(3) For each AeR, lim%f f(s)exp(— iAs)ds
t—oo 0

exists.
Put A, = {2 e R ; lim f‘f(s)exp(— iAs)
4 ’ t—o0 t 0

ds = O}. Then A(n,) = A, where A, is the least

1

additive subgroup of R containing A,.

Proof. See [1].

Corollary 2.3.1. Let ™ be an equicontinuous
minimal flow on a compact metric space X with
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A@ = A 5m, and 2 a,] < o0 (a,eC—{0)).

Put f(t) = 2, _,a,exp(id,t). Then f(t) is almost
periodic, and 7 and 1, are isomorphic.

Proof. Since Aty =A,=A, = A,},,
= A(m), the corollary follows from Proposition
2.1.

Proposition 2.4. Let T be a minimal flow on a
compact metric space X. Then x & R(x) implies x €
A(m), that is, a regularly almost periodic minimal
flow is almost automorphic.

Proof. See [6], p. 337.

Proposition 2.5. Let m be an almost automor-
phic minimal flow on a compact metric space X.
Then there exist an equicontinuous minimal flow O
on Y and a homomorphism h from m to o such that
Alm) ={ze X ; " {(h(@)} = {x}}. In this case
we have A(mr) = A(0). Furthermore, if A(xr) = X,
then T is equicontinuous.

Proof. For the first statement, see [7], p.
737. For the second one, see [2], p. 151. The last
statement follows from the first one

Proposition 2.6. Let 7 be a minimal flow on a
compact metric space X. For « > 0 and x e X, put
C,(x) = {x(x, na) ; ne Z}. If there exists a > 0
such that C,(x) * X, then A(x) *{0}.

Proof. See [1].

Proposition 2.7. Let m be a minimal flow on a
compact metric space X. We assume that C,(x) =
X for xe X and a > 0. Then there exists T, > 0
satisfies following conditions :

(1) {s;n(x, s) e C, (@)} = {nty},.,-

(2) C (o = Cu(m).
(3) ye Co@) implies C, (y) = Co(y) = C,(x).

@ (W, [- 3 F]) =x.

T T —
(5) For — 7“ =4, <t < 7", we have ©(C,(x),

t) N 7(C,(x), t,) = ¢.
(6) For0<e< %, n(C,(x), (— ¢, €)) is open

in X and homeomorphic to C,(x) X (— ¢, ).

Proof. See [1].

Proposition 2.8. Let  be a minimal flow on a
compact metric space X. If x,& R(x), then C,(x,)
* X for some a > 0. Furthermore, if C,(x,) ¥ X,
for each meighborhood V(x,) of X, there exist me
Z(m > 0) such  that w(xy, nmt,) € Co(xy) N
V(x,) for ne Z, where T, is the positive number in
Proposition 2.7.
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Proof. The first statement is obvious. For 0
T ———
<e <-6l , put U= V(z,) N n(Cy(x,) , (— ¢,
€)). Then U is a neighborhood of x, by Proposi-
tion 2.7. Hence, by the assumption, there exists g
> 0 such that 7(x,, nu) e U for ne Z Since
(x,, 1) e w(C,lxy) , (— ¢, €)), there exist me
Z(m >0)and veR(v|<e) such that g =
mt, + v. We assume v > 0, Choose le Z(I >
0) so that | lv| < e and | ( + 1)v| = e. Since ¢
T, T,

é(l+1)|v|§|lvl+|v|<25<?"‘<—2‘1 ,
we have 7 (C,(x), ({+ 1v) N U= ¢ by Prop-
osition 2.7. On the other hand, =m(x, (I +
D = n(xy, U+ 1) (mz, + 1)) = w(w(x,, (+
Dmz,), U+ Dy) e n(C,(xy) , (I + 1)v). Since
(x,, (I + 1w e U, this is a contradiction. Con-
sequently, u¢ = mt, that is w(x,, nmt,) e U
N Culx,) < Vizy) N C,lxy).

Proposition 2.9. Lei @ be a regularly almosit
periodic minimal flow on a compact metric space X.
If xyeR(m and Cylx) ¥ X (> 0), then

C,(xy) is O dimension at x,.

Proof. For any neighborhood V’(z,) of x,
we choose a neighborhood V(x,) of x, such that
V(z,) <€ V'(x)). Then there exists me Z(m >
0) such that w(x,, nmz,) e V(z,) N C,(x,) for

neZ by Proposition 2.8. Since C,, (x,) C
Vi(xy N Chlxy), Cpp, (g is closed in C,(xy) .
On the other hand, for sufficient small & > 0,
7(Cpe (xy), (— ¢, ©) N V'(xy) is open in X by
Proposition 2.7. Hence C,, (z)) = n(C,, (x,) ,

(—¢ ) N C,(xy) is open in C,(x,) .
quently, C (xo) is O dimension at x,.

Corollary 2.9.1. Let @ be a pointwise regular-
ly almost periodic minimal flow on a compact metric
space X. Then, if Co,(x) * X forxe X and a > 0,
then Co(x) is O dimension, that is, it is totally dis-
connected.

Proof. 1f ye C,(x), then C,(y) = C,(x) by

Proposition 2.7. Hence, since ye R(w), C,(y) is

Conse-

0 dimension at y. This implies that C,(x) is 0

dimension at every point in C,(z). Hence C,(x)

is O dimension.

Corollary 2.9.2. Let ™ be a regularly almost
periodic minimal flow on a compact metric space X.
If e R(x), then X is 1 dimension at x,.
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Proof. Choose a > 0 so that C,(x,) ¥ X.
For a sufficient small ¢ > 0, 7(C,(x,) , (— ¢,
e)) is open in X and homeomorphic to C,(x,) X

(— &, €) by Proposition 2.7. Hence, since C,(x,)
is 0 dimension at x,, X is 1 dimension at x, ([5],
p. 33).

Proposition 2.10. Let w be an equicontinuous
minimal flow on a compact melric space X. If
R(m) = ¢, then R(xr) = X, that is, il is pointwise
regularly almost periodic.

Proof. Let x,¢ R(m). Given & > 0, there ex-
ists a 0 > 0 such that dy(x, y) < 0 and te R

implies dy(z(x, ), n(y, D) <§ . For 0< ¢

3
< 3. there exists @ > 0 such that dy(z,, n(x,,

na)) < 0 for ne Z. Since m is minimal, for ze X
there exists s € R such that dy(x, w(z,, s)) < 4.
For this a we have
dy(x, n(x, na))
= dy(x, n(xy, ) + dy(n(zy, 5), w(7w(x,, nQA), 5))
+ dy(n(xy, 8), na), nl(x, na)) <e
Hence x ¢ R(m), that is, R(x) = X
Proposition 2.11. Let m be an equicontinuous
minimal flow on a compacl melric space X. If dim

A(r) =1,
periodic.
Proof. Let A(m) = {4,},.,, where A, =0
and 4, ¥ 0 (n = 2), and Z|a | < oo(a,eC—
{0}). Put f(p) = Z a, exp(z/l H for te R. By

Corollaries 2.2.1 and 2.3.1 and Proposition 2.10,
it is enough to show that f is a regularly almost
periodic point of 7, Since dimA(x) =1,

there exists 8 > 0 such that 4, = %B for n =
n

2,3,..., where p,, q,6Z are prime to each other.
Given ¢ > 0 we choose Ne Z(N > 0) so that

then it 1is pointwise regularly almost

2r
Zl(l |< Puta=?q2q3 ......... .
N+1
Since exp(zlka) = exp2mip,g,qs - * * * GerGin

- qy) =1 for 2 = k = N, we have
|f(t) — fra® |

=| Za,exp(a,b — Zak exp (il (t + na)) |
k=1 =1

<| 3 a, exp(iA, D) — Zak exp (id,d) (exp(id,a)" |
k=1

+ | i a,exp(AD — Z a,exp(A,(t + na)) |

K=N+ k=N+1
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< 3 Iak|+ Z lak|<s

k=N+
Hence f is a regularly almost periodic point of
Ny

Proof of Theovem 1. Assume that R(xw) = ¢.
Then A(m) = ¢, since R(w) < A(m) by Proposi-
tion 2.4. Hence m is almost automorphic. By
Propositions 2.6. and 2.8, we have A(x) = {0}.
To prove dim A(m) = 1, we assume that there
exist A,, 4,6 A(x) which are rationally indepen-
dent. Let x; and x;, be eigenfunctions belonging
to A, and A, respectively. Define a flow o on
T*=Kx K by p((§, &), D = (§exp(A,D,
g,exp (i,0) for (£, &) ¢ T* and te R. Then o is
an equicontinuous minimal flow on T?. Define a
mapping h : X— T? by h(x) = (X;l(l‘), X;Z(I)).
Then A is a homomorphism {rom m to p. Since, if
xz,e R(m), we have h(x,) ¢ R(o) by Proposition
2.2, T? is 1 dimension at h(x,) by Corollary
2.9.2. This is a contradiction, because T~ is
obviously 2 dimension at k(x,). Hence dim A(x)
=1.

Conversely, we assume that A(xw) * ¢ and
dim A(r) = 1. Then there exist an equiconti-
nuous minimal flow o on Y and a homomorphism
h from 7 to o such that A(x) = {z;hn"
{(h(x)}) = {x}} by Proposition 2.5. In this case,
since dim A(x) = dim A(p) = and o is
equicontinuous, o is pointwise regularly almost
periodic by Proposition 2.11. The restriction of &
to A(r) is a homeomorphism from A(x) to
h(A(m)) with respect to the relative topology, be-
cause A is injection and continuous. For x¢ A(x),
let V(x) be an open neighborhood of x. Then
h (V) NA@@) = h (V@) N h(A(r)) is open
in h(A(x)) with respect to the relative topology.
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Hence there exist an open set U of Y such that U
N h(A()) = h(A(m) N V(x)). Since p is reg-
ularly almost periodic, there exist a > 0 such
that o(h(x), na) e Une Z). Since p(h(x), na)
= h(rx(x, na)) (me Z) and h(A(r)) is an in-
variant set of p, we have p(h(x), na)e UN
h(A(m)) = h(V(x) N A(x)). Consequently, m(x,
na) e A(m) N V(x) (ne Z). This implies x e R(x).
Hence 7 is regularly almost periodic.

Proof of Theorem 2. We assume that 7 is
pointwise regularly almost periodic. Then X =
R(r) € A(w) means A(mr) = X. Hence w is
equicontinuous by Proposition 2.5. Furthermore,
dim A(w) = 1 follows from Theorem 1. The con-
verse is Proposition 2.11.
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