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Accessibility of Infinite Dimensional Brownian Motion
to Holomorphically Exceptional Set*

By Hiroshi SUGITA**’ and Satoshi TAKANOBU™***)

(Communicated by Kiyosi ITO. M. J. A., Nov. 13, 1995)

1. Introduction. In [6], we introduced the
notion of holomorphically exceptional sets of the
complex Wiener space. In particular, we pointed
out the following remarkable relation between
holomorphically exceptional sets and the stan-
dard Brownian motion (Z,),», on the complex
Wiener space: Z, does not hil a holomorphically ex-
ceptional set until time 1 almost surely.

In any finite dimensional space, if the Brow-
nian motion does not hit a certain set until time 1
almost surely, neither does it after time 1. So one
may guess that the infinite dimensional Brownian
motion never hits a holomorphically exceptional
set after time 1, either.

But we will show in the present paper that
the above guess is false. That is, we will con-
struct a holomorphically exceptional set which
the Brownian motion (Z,),-, hits after a certain
time ¢, > 1 almost surely.

The reason why such an example can exist
lies essentially in a fact that the distributions of
(Z)),, at different times are mutually singular.

2. Presentation of Theorem. Let (B, H, )
be a real abstract Wiener space, i.e., B is a real
separable Banach space (whose dimension is infi-
nite), H is a real separable Hilbert space con-
tinuously and densely imbedded in B and g is a
Gaussian measure satisfying

fexp(\/— 1<z, D)p(dz) = exp(— %II A i,*>
B

le B*C H".
We introduce an almost complex structure J : B—
B which is an isometry such that J2= — 1 and

that the restriction J|,:H— H is also an
isometry. The abstract Wiener space (B, H, p)
endowed with the almost complex stucture J is
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called an almost complex abstract Wiener space and
denoted by (B, H, u, J).

Let B*C be the complexification of the dual
space B*. Then define

B*(I,O) - {(,O c B*Cl]*(p — \/_—1(0},

B*(O,l) - {QD = B*C|f*g0 - =7 l(p}.

In other words, B*"” is the space of bounded
complex linear functionals on B and B*" is the
space of bounded complex anti-linear functionals
on B. We see that B*¢ = B** @ B**"_ The
Hilbert spaces H*C, H*" and H**" are simi-
larly defined.

Definition. 1. A function G : B— C is cal-
led a holomorphic polynomial, if it is expressed in
the form
(1) G =gz, ¢2,...,%2, 0,0), 2 € B,
where n € N, g : C"— C is a polynomial with
complex coefficients and ¢, . .., ¢, € B**?
The class of all holomorphic polynomials is de-
noted by %,.

Definition. 2. Let p € (1, ©). For a sequ-
ence {G,} © @, such that 2, [| G, [, < o, we
define a subset N*({G,}) of B by
2) N°{G,}) :={z€ B|Z|G,(2) | = 0}.

n

A set A C B is called an Lp—holomorphically excep-
tional set, if it is a subset of a set of the type
N’({G,}). We denote the class of all L’-
holomorphically exceptional sets by J\/i. If an
assertion holds outside of an Lp—holomorphically
exceptional set, we say that it holds “a.e.(N%)”.

Let (Z),>, be a B-valued independent in-
crement process defined on a probability space
(2, #, P) such that Z, = 0 and the distribution
of Z, — Z, t > s, is p,_5, where p,(+) 1= u(-/
V7). Then the process (Z,),~, becomes a diffu-
sion process on B and it is called a B-valued
Brownian motion (see, for example, [3]).

In [6], it is known that (Z)),~, does not hit
any Lp-holomorphically exceptional set until time
1 almost surely.

Theorem. There exists an L*- holomorphically
exceptional set A C B such that



196 H. SuGiTA and S. TAKANOBU

1<o0,:=inf{t=>0]Z,€ A} < as.

We construct the set A as follows: Let
{o )0, < B*” be an orthonormal system of
H*"” Then put

nn+1)
1
3 G,(»:=— 1 {z, o2, n=1,2,...
N jensD

Note that {G,},_, is a sequence of independent
random variables under each probability measure
t,, t > 0 and that [ G, “Lz(u) =1/n’. Finally we
define A by
(4) A= N({G,)).
Then we will prove that

6,= ¢, as.,
where

r=1lim (£ 1 — logn) = 0.57721. ..

n—oo ‘=1
is Euler’s constant.

Remark. If ¢+t then g, and gy, are
mutually singular, and hence there exists a set K
such that

{pc,(K) =0, f0<t<1,
(K =1, if1 <t
But, we do not know in general whether 1 < oy
or not for such K.

3. Proof of Theorem. In this section, we
always assume that A is the Lz—holomorphically
exceptional set of B defined by (4).

Lemma 1. For cach t = e, we have y1,(A) =1

Lemma 1 means that Z, € A, as., il t 2> ¢,
and hence 0, < ¢’, a.s. This lemma immediately
follows from the following lemma.

Lemma 2. Let &, &,,... be a sequence of [0,
00) —valued i.i.d. random variables with distribution
2rexp(— #*)dr. Pul

nn+1)
1 2
&= II E&,n=1.2,...
._nn-—1)
n =22l

Then if t = €', we have

3

n/2 _
t g, = %, as
n=1

Proof. In fact, we have
(5) lim ¢™%g, = ©, as.,
#i— o0
which we will show below.
We first rewrite log g, as
n
log g, = —%-*— S, — 2logmn,

where

[Vol. 71(A),
nin+1)
: o 7
S,t= X &, Ei=log§+ .
j=n(nz—-1)+1

Note that {Z;};_, is a sequence of i.i.d. random
variables with mean O and variance v := Var(5))

<= % ar@ —r»H > 0), which are indeed

computed by using the equality

I'’(1) (see, for example, [2]). Then we have
™/2 — _S,/logn—2

(6) e g, =n

According to the central limit theorem, we see

r=-

im (= 1) = im p(Z55 21)
_ jlm _\/%_U‘ e g
>0,
and hence
S,

E}P(\/ﬁ >1) = .
Since {{S,/vn = 1}},_, are independent events,
the second Borel-Cantelli lemma implies that
P <:Z% > 1, infinitely often) = 1.
Thus we see
— S, _ _

P(},‘_{E logn — oo) =1
and hence by (6) we finally have (5).

Now that we have seen o, < e', we will
prove the opposite inequality:

Lemma 3. 0, = ¢', a.s.

Since A is a holomorphically exceptional set,
it is known that ¢, = 1 by [6]. To get more pre-
cise estimate as in Lemma 3, we need the follow-
ing lemma.

Lemma 4. Let 0 < T < e’. Then there exists
0 < p <1 such that

b

T“I‘(—Z— + 1) <1

Proof. We first show the following inequal-

ity:
(7) nf;il (1 + %) e > exp(— n—;é)
0<zx<1.

To do this, we note two simple facts:

1
QA +xe"=1— xzf se ®ds, r€ R
0

© 0 a-a)zen(- 12)

n=1
0<q,<1,n=1,2,...
These two facts imply for any 0 < x < 1 that



i (1 + £) = 11 (1 -z _/: se_z"sds>

=x/n

\Y2
o)
4
o

|
Ms

= exp <— i x,f)

- e (-

thus we obtain (7).

Since we have assumed 0 < T < ¢', and
hence 7y —log T > 0, we can take 0 <p <1
such that

(10)

2

T b
r—logT 6 2 > 0.
Then we see that
p/2 P_
T F(2+1>

_ e(p/znogrr(% + 1)

_ e—(g/zur—logr)erp/zr<g + 1>.

Noting (7), (10) and Weierstrass’s formula

1 T hd _.Z‘_ -x/n
I'z+1) ¢ ,,I=Il<1+ n)e » >0,
we see
pr2 (D
T F(Z + 1)
~(p/2) (r—log T) 1
hd _P__) —p/on
nI-gl (1 + 2n €
2
< g2 logT)exp(-%— (12> 2)

= exp(— %(7 —log T — T?)) <1.

Thus the proof of the lemma is complete.
Proof of Lemma 3. Let 0 < p <1 be as in
Lemma 4. By Minkowski’s inequality, we have

) P oo
<§| G,(Z) I) <S16,@) !

<3 sup_ |G, (Z) |

n=10<s<
O <t<T.
Therefore,
sup < | G,(Z) |> > sup |G,(2) I,
0ot<T n=10<t<T
and hence,
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E [ sup <.§ | G,(Z) |>D]

0<t<T ‘mn=1
<XE [ sup | G,(Z) I”]-
n=1

0<t<T
Now, let p° be such that 0 <p’ <p.
Since (G,(Z)),>, is a conformal martingale,
(1 G,(Z) "), is a submartingale (see [1]). B
Doob’s inequality, we then have
E [ sup | G,(Z) |P]

0<t<T

(11)

= E|( suwp_|6,2) I"')W]

0<t<T

P\ »
< (p _p,) Ell G,(Zp) 1.
Combining this with (11), we have
(o] p
E [ sup (Z | G, (Z,) [) ]

0<t<T ‘n=1

(12)

< (2 p,)W 2 E16,Z .

By the definition (3) of G,(2) and P(Z; € -) =

u(WTz € ), we see
Ell G,(zp) N

1\? . nn+1)/2
N <_1;;> ‘/1; T p/zj n(ﬂI_I)/2+lI <Z’ (0,) |p#(d2)

-1

(Y T (e o butan)

n
Here, the last integral is calculated as

fB | <z, o [Pu(d2)
2 + yz)p/z % e—(12+y2>dxdy

So we have

Ell 6,zp I = (

Then by virtue of (11), w
E[sup <Z|G(Z |

0<t<T
< (p f p,>»/pf ni:ini (Tp/zr(% + 1)>n

< oo,
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The last inequality “ < o0” follows from Lemma
4. Thus we have

=3 p

sup < | G,(Z,) |> < oo as,
o<i<rt n=1

which implies

P(S16,@z)I<wo<"t<T) =1,
n=1

or equivalently, o, = T as. Since 0 < T < ¢” is
arbitrary, we finally obtain ¢, = ¢ a.s.
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