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1. Introduction. Let R(t)be strictly increasing and continuous in
t --> 0 with R(0) 0. In a space-time domain
(1.1) D ((t, x) ;t > O, x [- R(t), R(t)]},
we consider a singular diffusion equation and its formal adjoint

u x Ou O 1 0

x t 8x t 8x
p 0,

with the reflecting boundary condition. (1.2) determines a transition prob-
ability Q(s, x t, dy), s, t [a, b], 0 < a 4 b < Since (Q(s, x t,
dy) ;s (0, el} is tight because of (1.1), we can chose (s) 0 so that
(1.3) Q(0, 0; t, dy) lim0 Q(s, (s) t, dy)
exists, but the limit Q(0, 0; t, dy) depends on and is not uniquely deter-
mined in general. We will discuss this problem and its implication to the ori-
gin of universes in terms of a Skorokhod problem with singular drift x/t.

2. A Skorokhod problem. Instead of (1.2) with the moving reflecting
boundary we consider a two-sided Skorokhod problem with singular drift

(2.) x a + <

where fl denotes a one-dimensional Brownian motion, and
(2.2) is continuous in t 2 0, 0 0,

(-) (+)= for t> 0,
-) increases only on (s X(s) R(s)},

(+)t increases only on (s" X(s) R(s)}.
We will construct solutions of the problem (2.1), and show that the

shape of the boundary of the domain D influences the uniqueness and
non-uniqueness of solutions of (2.1). Assuming
(2.3) R(t) (t) r, 0 < y < 1, for small t,
where 0, we shall analyze the behaviour of solutions near the origin.

3. The case without boundary. Equation (1.2) but [a, b] R without
boundary determines another transition probability P(s, x t, dy). Contrary
to the case with reflecting boundary, P(0, 0;t, dy) cannot be well-defined,
since (P(s, x t, dy) :s (0, s]} is not tight. Hence, a stochastic differen-
tial equation

’Xs ds

has no adapted solution, where fit denotes a one-dimensional Brownian mo-
tion. Nevertheless, a theorem of Jeulin-Yor [5] (cf. [6]) claims that Xt satisfies
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(3.1) if and only if
(3.2) Xt aBt + tY,
where B is given by

(3.3) B= t s
which is a one-dimensional Brownian motion, and Y is a random variable.
As a matter of fact, (3.1) is an equation derived from the second time rever-
sal.

4. The minimum and maximum solutions. Avoiding the singularity at
the origin, we consider a problem starting from the lower boundary --R(s)"

x,
ds + ,, X, < R(t) s,(4.1) X= --R(s) + a(flt-- fl) + --S-- t>_

subject to (2.2) with q) = O, where > O. Since there is no singularity in
the problem (4.1), it has a unique solution.

Lemma 4.1 (i) Let Xt-s) be the solution of (4.1). If 0 < " < , then

(4.2) X{-’ <- X-’’, for t >_ s,
namely X- is monotone increasing as s 0. (ii) There exists

(4.3) X lim Xt-
which is the minimum solution of the problem (2.1).

Proof Let us define T-inf {t" Xt(-= Xt(-’)}. Then, (4.2) holds,
since
(4.4) X-s) <Xt(-s’

for s < t< T andXt
(-s) Xt(- for t> T

Taking limit s ; 0 in (4.1), we have the second assertion.
We consider also a problem starting from the upper boundary R(e) at

s>0"

ds + xl< R(t) s,(4.5) X= R(s) + a(fl,-- fl) + - t>_

subject to (2.2) with q) 0. Then, we have
Lemma 4.2. (i) Let Xt be the solution of (4.5). If 0 < " < , then

(4.6) Xt > X(, for t >
nmely X(t is monotone decreasing as O. (ii) There exists

(4.7) X-- lim X{,
s$o

which is the maximum solution of th____e problem (2.1).
Theorem 4.1. Let X_ (resp. Xt) be defined by (4.4) (resp. (4.7)), nd Xt be

any solution of the problem (2.1). Then
(4.8) X, <_ X <_ Xt, fort >_ 0,
for almost all Brownian paths. The minimum solution Xt (resp. maximum one Xt)
reaches the lower-(resp, upper-)boundary immediately.

5. The uniqueness and non-uniqueness of solutions. First of all we re-
mark that for a one-dimensional Brownian motion B the law of iterated
logarithm holds" namely, for almost all Brownian paths

B(5.1) lim 1
0 v/2t log log t-
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Theorem 5.1. Let R(t) be given in (2.3). Then, there exist solutions of the
Skorokhod problem (2.1). If 0 T < 1/2, then solutions of (2.) are not unique-
ly determined, while the uniqueness holds, if I/2 <-- T 1.

Proof. Because of (5.1), if 1/2 _< " ( 1, any solution of (2.1) hits the
lower and upper boundaries {- R(t), R(t)} immediately, as do the mini-
mum and maximum solutions Xt and Xt. Therefore, the uniqueness of solu-
tions holds. Moreover, (5.1) implies that if 0 T 1/2, then a Brownian
motion Bt does not immediately hit the boundary {-- R(t), R(t)}, and hence
processes Xt aBt + tY also do not immediately hit the boundary. There-
fore, if we define a process by
(5.2) Xt aBt + tY, for t
with B given in (3.3), where > 0 is the first hitting time to the boundary,
and for t by a solution of a Skorokhod problem

(5.) X= B + sY + (-- ) + ds + ,, X N R(t),

then the process solves the problem (2.1).
6. Another representation f slufins f (2.1). Corresponding to

Jeulin-Yor’s theorem, we have, in the case of the moving reflecting boundary,
Theorem 6.1. Assume

R(t)
(6.1) lim 0.

Then, X satisfies equation (2.1), if and only if
ds(6.2) Xt aflt- t s

where Bt is a one-dimensional Brownian motion given in (3.3).
Proof Let X satisfy equation (2.1) and B be defined by (3.3). Then,

we have, with integration by parts formula,

(6.3) ds +
S S

since Xr/r] R(r)/r O, as r by (6.1). Therefore,
das dX + t ds + t(6.4) aBe= t s t s s s

x, + t e#ss
Thus X satisfies (6.2). The converse can be verified in the same way.

The representation (6.2) means that if one looks at the rocess X know-
ing the future (the second time reversal), the singular drift field in (2.1) dis-
appears.

7.
0 in (5.2) and (5.a), we call it a "central solution" or "central process". It is

central, in the sense that it starts from the origin as a Brownian motion. This
means that in the representation (6.2) the integral term vanishes for suffi-
ciently small , namely, there is s > 0 such that

ds(7.1) t s 0, for tN s.
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Theorem 7.1. Assume R(t) (at) r, 0 < " < 1/2, for small t, and let

X be the central solution. If O < " <-- 1/2 for large t, then Xt X 0 in
law as t__T oo for any solution X of the problem (2.1); if 1/2 < " < 1 for large
t, then Xt- Z (resp. Xt-- X) does not converge in law as t T oo, where X
(resp. Xt) is the maximum (resp. minimum) solution of (2.1).

A proof can be carried over with the help of the law of iterated loga-
rithm:

B(7.2) lim 1{2t log log t
8. An application. Applicability of diffusion theory to various fields

of different orders of magnitude, including quantum physics, in particular
particle theory, biology, cosmology, and so on, was discussed in (cf. [3], Sec-
tion 4.7 and Chapter 9). Let D be the space-time domain given in (1.1). We
consider a simple model of a one-dimensional universe after ([2], personal
communication). We consider a diffusion equation and its formal adjoint in D
(8.1)
u 1

_
a2u au p 1 _. p

---[ + - a
x
+ a t x) - O, St + - a

8x 8x a (t x)/2) 0,

with the moving reflecting boundary condition, where a drift field a(t, x) is
given, taking into account of the Hubble law, through

(8.2) a(t x)
R’ (t) x
R(t)-x, where 0 _< R(t) <- 1, for t > 0.

If we assume (2.3), then
X

(8.3) a(t, x) "fTt"
Theorems 4.1, 5.1, 6.1, and 7.1 solve this problem. In fact, through time
change, with a new diffusion coefficient a- d/, equation (8.1) with (8.3)
reduces to equation (1.2). Therefore, it is enough to consider solutions of the
two-sided Skorokhod problem (2.1) instead of (8.1).

The reason why we adopt a diffusion process as a model of the universe
should be explained. It is based on a theorem (cf. [3], Chapter 4), which
claims the equivalence between the diffusion equations (8.1) and the
SchrOdinger equation

(8.4) i-t- + a V(t x) 0
X

where exp(R W iS). As a matter of fact, for the equivalence we need
the so-called SchrOdinger representaion (which can be regarded as a sort of
"the equation of motion") of diffusion processes:

(s.5) + a Ox + c(t, x) o, ot + g a Ox + c(t, x) o,

where exp(R + S) and - exp(R- S). Then, we have
(8.6) c + V+ (aSx)+ 2 O.
Because of the Hubble law (8.2) we choose
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x

Then, "the creation and killing c(t, x) induced by (t, x)" vanishes, i.e.,

c +ya o,
x

in other words, (t, x) is a space-time harmonic funcion. Therefore, in our

case formula (8,6)implies
(8.8) Y (aSx) 2.
Moreover, because of the duality relation, we have

1
S(t, x) = log (t, x) log (t, x).

Since, for small t and x, and 0 y 1/2,

together with (8.7) we have,

3 1 x 11
(8.9) V(t, x) 4 a t

e , for small t > O,

for the potential field in (8.4).
In other words, with a diffusion process on D, three equations of diffe-

rent types (1.2), (8.4), and (8.5) are associated, they are equivalent each
other, and for the distribution density (t, x)of the diffusion process we

have
(8.10) p(t, x) (t, x)(t, x) (t, x) (t, x),
which is one of the fundamental formulae of time reversal in diffusion
theory, and also in quantum mechanics (cf. [3], Chapter 4 for detail).

Another important point should be emphasized here. If we are to de-
scribe the behaviour of radiation and mass "particles" in the universe, we

are dealing with a many-particle system, not with a single sample path of an

ordinary diffusion process. The distribution density g(t, x) of our diffusion
process should therefore be viewed as the spatial statistical distribution den-
sity of (infinitely) many interacting particles; more precisely, we can regard
it as the limiting distribution in the sense of the propagation of chaos, as n
tends to infinity, of a system of n-interacting particles (cf. [3], Chapter 8).
This point, together with interference of superposition, is important in con-

nection with the. problem of seeds for the large scale structure of the uni-

verse in terms of the fluctuation of the distribution (cf. [1]).
In short, with the terminology of conventional physics, for our model we

adopt quantum mechanics (notice that "imaginary time" is not employed) in

describing the universe, in particular near its origin (0,0), and moreover we

assume that R(D is determined by the general theory of relativity, possibly
through the Friedman equation

(8.11)
R 3 Gp+,

where p R -4
if the universe is in the radiation dominated phase, while



No. 4] A Skorokhod Problem with Singular Drift 93

p R -3
if matter dominated.

9. Interpretation. Despite the singularity of the drift field, universes
can naturally start at the origin (0,0) from nothing. If we adopt a
boundary-less model of universes in one-dimension. Namely (1 + 1)-
dimensional model, the spatial distribution is on a circle of radius R(t),
which is viewed as the closed interval [--R (t), R(t)], for t > 0, in our
model. Namely, we identify zc- 0 with 0 for 0 [- 7r/2, 7r/2] in the
cylindrical coordinates in three-dimensions. Then, introducting a new vari-
able x- 2R(t)O/zr [--R(t), R(t)], we get our space time domain D-
{(t, x) ;t > 0, x [-- R(t), R(t)]}. Accordingly, t (resp. Xt) can be
interpreted as a universe with spin + (resp. spin --). From t 0 to a critical
time to > 0 (which might possibly be the Planck time 5.39 x 10-44

sec)
there is still a considerable amount of concentration of radiation near the
origin if t < to but it will quickly spread out and be homogenized. We
have assumed R(t) (at) r, 0 < 7"< 1, for small t, but 0 < 7"< 1/2 is
suggested in order to retain enough fluctuation as seeds for large scale struc-
ture. If 0 7" < 1/2 for small t, our universe is possibly a superposition of
solutions of SchrOdinger equation (8.4) (or (8.1)), for this cf. [4].

If we take into account of the so-called inflation model of universes,
R(t) might possibly be
(9.1) R(t) (a(tAtl) r exp {((t--t)+Av)} + (cr(t--t.)+) r,
in the radiation dominated phase, where 0 < to <-- t < t2, r- t2 tl is the
time span of inflation, t2 is the moment that the so-called big bang occurs,
and )’ 1/2. During the inflation, we have a drift field
(9.2) a(t, x) cx, for t
through (8.2). If the universe becomes matter dominated, then R(t)

Our (1 + 1)-dimensional model can be generalized to a (1 + 3)-
dimensional model.
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