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1. Introduction. Let G be a connected semisimple Lie group with fi-
nite center, and K be a maximal compact subgroup of G. The corresponding
complexified Lie algebras are denoted respectively by and f. We assume
Harish-Chandra’s rank condition rank G rank K, which is necessary and
sufficient for G to have a non-empty set of discrete series, or of square-
integrable irreducible unitary representations of G.

In this paper, we describe the associated varieties of Harish-Chandra
(g, K)-modules of discrete series, by an elementary and direct method based
on [3]. The description is as in

Theorem 1. If HA is the (g, K)-module of discrete series with Harish-
Chanda parameter A-/ + Pc- Pn (see 3), then its associated variety
(HA) (see 2) coincides with the nilpotent cone KcP_, which is equal to
Ad(K)p_. Here Kc denotes the analytic subgroup of adjoint group Gc "=

Int(l) of , with Lie algebra t, and p_ is the sum of root subspaces

of corresponding to the noncompact roots such that (A, ) 0.
We further give in Theorem 4 an explicit formula for the Gelfand-

Kirillov dimensions d(HA) dim (HA) of discrete series in the case of unit-
ary groups G S U(p, q), by specifying the unique nilpotent Gc-orbits in fl
which intersect p_ densely. Note that this important invariant d(HA)
coincides with the degree of Hilbert polynomial of HA.

We know that Theorem 1 can be deduced from deep results in [l, III]
and [4] by passing to D-module via Beilinson-Bernstein correspondence.
However, the associated variety is an object attached directly to each finitely
generated U(6)-module. From this reason, we give here a direct path to the
theorem avoiding the above detour by D-module. Our proof of Theorem 1 is
simple in the sense that it uses only some basic results of [3] on the realiza-
tion of HA as the kernel space of differential operator on G/K of
gradient-type. Nevertheless, this method gives us new conclusions also
(Theorem 3). For instance, we find that the associated variety of discrete
series can be expressed in terms of the symbol mapping of .

2. Associated varieties for U()-modules. Let U(9) be the enveloping
algebra of , and (U(9))=o,,.. be the natural increasing filtration of U(),
with U,(fl) the subspace of U() generated by elements xm(o <- m <_ k,
X ). We identify the associated graded ring gr U(9)= @ o U,(9)/
U_() (U_(9) "= (0)) with the symmetric algebra S(9) @, 0 S() of

in the canonical way. Here S(9) denotes the homogeneous component of
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S(g) of degree k.
For a finitely generated U(g)-module H, take a finite-dimensional sub-

space Ho of H such that H U(g)Ho, and set Hk Uk (g) Ho(k 1,2,... ).
Then (H) gives an increasing filtration of H, and corresponding one gets a
finitely generated, graded S(g)-module M := > oM with M H/

The annihilator ideal Anns)M "= {D S(g) [Dv 0 (V v } of
M in S(g) defines an algebraic cone in g:
(2.1) ( "= {X [f(X) 0 (Vf Anns)M)},
which is independent of the choice of a subspace H0. Here S(g) is viewed as

the polynomial ring over g through the Killing form of g. The variety
( and its dimension d( := dim( are called respectively the
associated variety and the Gelfand-Kirillov dimension of H (cf. [5, 6, 8]).

3. Discrete series for G. We now fix some notation on the discrete
series representations of G (cf. [2]). Take a compact Caftan subgroup T of G
contained in K. Let A be the root system of g with respect to the complex-
ified Lie algebra f of T. The totality of compact (resp. noncompact) roots in A
will be denoted by Ac (resp. An). Fix once and for all a positive system A[ of

+-dominant, A regular linear forms A on f such thatA. Let be the set of A
A + p is T-integral through the exponential map. Here p:= (1/2)
with A+ {a A[ (A, a) > 0}.

By Harish-Chandra, there exists a natural bijective correspondence, say
A A, from onto the set of (equivalence classes) of discrete series repre-
sentations of G. By taking the K-finite part for a, one gets an irreducible
Harish-Chandra (fl, K)-module, which we denote by Ha from now on.

For a A2-dominant, T-integral linear form p f*, let (v,, V,) denote
the irreducible K-module with highest weight . Set for a A
(3.1) 2 "= A p + p,, with p "= (1/2)’ a, p, "= p p.
Then the a, looked upon as a K-module, contains v with multiplicity one,
and the highest weight of any K-type of a is of the form:
with integers n 2 0. We call v the lowest K-type of a.

4. (S(fl), -modules GrN(v). For a finite-dimensional K-module
(v, , let (v) be the space of real analytic functions f G V satisfying
f(gk) v(k)-Xf(g) (g G, k K). The group G acts on (v)by left
translation, and (v) becomes a U(g)-module through differentiation. Let
fl f p be the complexified Cartan decomposition of ft. Setting for each in-
teger k 2 0,
(4.) Z,,:= {f Z(r) (Xf)(1) 0 (VX p, 0 Vm k)}
and ():= () for k < 0, one gets a decreasing K-stable filtration

((>)z of () such that Um(g)N() c N(-m) for k, m 2 0, and corres-
pondingly we have a graded (S(g), -module
(4.2) Gr () := @ ()/(+1.

Now take two bases (X) Xi*= and )= to the vector space p such that
B(Xi, X) 6 (Kronecker’s 6) for the Killing form B of g. We put

e(f) "= =+1(/.). (x*) @ (xf)() s+(p) v(f
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where X "= X1"1’’ "Xs"s, (X*) "= (X*) 1’’ (Xs*) s and 9!- 91! "9s! for
multi-indices 9= (91, ,gs) of length 191 .= 91 + + 9s k+ 1.
Observe that ek(f) is independent of the choice of (Xi) and (X*)i, and that

ek naturally gives a K-isomorphism"
STM(4.3) (/(+ (p) @ V,

where K acts on STM (p) through the adjoint action.
Lemma 1. The map ( gives a graded (S (g), K) isomorphism

from Gr N (v) onto S(p) @ V, where S(g) acts on S(p) @ V by differentiation"
Y (X @ v) kB(X, tOXk-l @ v for Y g, X @ v S(p) @V(k=
0,1,...).

We identify Gr s(v) with S(p) @ V by this isomorphism 2.
5. Operators and graded modules Gr Ha. Since the discrete series

Ha contains the lowest K-type (v, V), A- Pc + P,, with multiplicity
one, there exists a unique, up to scalar multiples, (g, K)-module embedding

H c._, M(v). We regard Ha as a submodule of M(v) through this embed-
ding. Then one gets a graded (S(g), K)-submodule of Gr M (v)"

Gr H "= (](H sd())/(H f (k+l))
through the decreasing filtration M(k) of M(v) in (4.1).

Using the bases (Xi)S=1 and (X*)__ of p in 4, we set for f N (va),
(5.1) gf(g) "= E__ Rx, f(g) @ X* (g G),
where RD denotes the left G-invariant differential operator on G correspond-
ing to D U(g). Then I7 does not depend on the choice of dual bases, and
it defines a first order, left G-invariant differential operator from M(v) to

s/(v @ Ad,). Here Ad, denotes the adjoint representation of K on p.
Let (, Ve) be respectively the K-submodules of V @ p generated by

highest weight vectors of weights / -+- fl for some fl A+ A. f A+, and

P V -- V- be the projection along the decomposition V @ p V+ ( V-.
The above I7, composed with P yields a G-invariant differential oper-

ator from s (v) to M(v-)"
(5.2) f(g) "= P(gf(g)) (f sd(v)).
Passing to the gradation, we get an (S(g), K)-module map
(5.3) Gr[] "S(p) @ V Gr s (v)---, Gr s/(v-) S(O) @ V-.

It follows from results of Schmid, Hotta-Parthasarathy and Wallach that
the L-kernel of realizes the discrete series 7ra for each A . In order
to prove Theorem 1, we employ Gr[fl] rather than fla itself, and use the fol-
lowing

Theorem HP (cf. [3]). One has GrH Ker(Gr[])provided the
lowest hightest weight/ A p + p ofH is sufficiently Ac-regular.

6. Outline of proof of Theorem 1. FIRST STP. Let Ha* be the K-finite
dual of discrete series Ha. Note that H H_won as (g, K)-modules, where

+ A+ We are goingwo is the element of Weyl group of A such that WoA c.

to prove
(6.1) V(H*) KcP+ Ad(K)o+ with p+ "= ,;, g,,
which is equivalent to the claim of Theorem 1.

First, Theorem HP allows us to deduce the following
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Proposition 1. For sufficiently Ac-regular , A- Pc + On, the associ-

ated variety V (H’A) of H* is expressecl by means of Gr[] as

V(H* {X g f(X) 0 (Vf Anns()Ker(Gr[]))}.
Sco Sp. Let v be a nonzero highest weight vector of V. For each

integer k 2 0, let Q() denote the K-submodule of S(p) @ V generated
by subspace S (p+) @ v. Then one easily observes that
(6.2) Ker(Gr[]) (S(p)@ V) D Q+ ().

We can prove the Illowing proposition with the aid of [3, Lemma 5.2].
Proposition 2. For each k 0, there exists a constant c 0 for which

the equality holds in (6.2) if (, ) > c( V A +)
THInD STriP. Let (KcP+) (f S() f( 0 (V X KcP+)} be

the ideal of S() defined by the cone KcP+. Noting that this ideal is finitely
generated since S(fi) is Noetherian, we deduce from Proposition 2,

Theorem 2. One has Anns(u)Ker(Gr[]) (KcP+) for every A
--Pc Pn. Moreover the equality holds in this inclusion if the parameter is

sufficiently Ac- regular.
FINAL STEP. Let B be the Borel subgroup of Kc with Lie algebra f

e fla. Notice that p+ is B-stable and that Kc Ad(K)B by the Iwasawa
decomposition of Kc. We then find that KcP+ Ad(p+ is a closed subset
of fi because of the compactness of K.

Now Proposition I and Theorem 2 yield the desired (6.1) for sufficently
Ac-regular . With the Zuckerman translation principle in mind (cI. [7, I,
3.4]), we conclude that (6.1) holds for every . This completes the proof of
Theorem 1.

7. The above discussion leads us also to the following conclusions.
Theorem 3. Assume that 2 be sufficiently Ac-regular. Then,

the annihilator ideal of S()-dule Gr H coincides with its radical.

(ii) Onehas(H) (X pP(v@ 0 (Sv V(0))).
We remark that V @ p (v, P(v @ X) V- is just the (com-

plexified symbol mapping of at the origin o K G/K.
8. Gelfand-Kirillov dimensions d(Hn) for SU(p, q). By applying

Theorem 1, we can give an explicit formula for the Gelfand-Kirillov dimen-
sions d(Hn)= dim KcP_ of discrete series for G S U(p, q)(n p + q,
q>O).

8.1. Realize the group G as

G {g SL(n C)[tIp,qg Iq} with Ipq- (I 0 )
where I is the identitiy matrix of degree r, and tg (resp. ) denotes the trans-
posed (resp. the complex conjugate) of a matrix g. Then we have gl(n, C)
and {Z diag(tt,... ,t,)lt C, tr Z 0}. The root system A (resp.
Ac A) of g (resp. t) with respect to is of type An_ (resp. A_ x A_t),
and it is given respectively by
A= {e,llNi, jNn, iCj},A {eAllNi, jNporp<i, jNn}

with e(Z) := t- t(Z t).
Fix a positive system A2"-{eo Ac[i<j} of Ac. Let H,q be the
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totality of maps h from F(n):= {1,2,...,n} to the set {a, b} of two ele-
ments a and b, such that # (h-l({a}))=p and # (h-l({b}))= q, where
# (S) denotes the cardinal number of a set S. For an h Hp,q, arrange the
elements of h- ({a}) and h- ({b}) respectively as

(w(1), w(2),...,w(p)) with w(1) < w(2) < < w(p),
(w(p + 1), w(p + 2),...,w(n)) with w(p + 1) < w(p + 2) < < w(n),
and we put
(8.1) A+(h) "= {e e A [w(i) < w(j))
through this w. Then we easily find that h - A+(h) gives a one-one corres-

+pondence from Hp,q onto the set of positive systems of A including A
Now let h Hp,. Take a discrete series (, /0-module HA with

A+ (h) -dominant parameter A . By Theorem 1, we see that d[h] :=
d(HA) is independent of the choice of such a A. The map H,q h--*
d[h] completely describes the Gelfand-Kirillov dimensions for discrete
series of G SU(p, q).

We put H "= thn= ll(n)(disjoint union), where the set II(n)"=
[2 +q__,H, consists of all mappings from F(n) to {a, b}. Extend h--* d[h],
defined on each Hp,, to a function d[’] on H in the canonical way.

8.2. Let h II(n)(n > 0). In order to specify the Gelfand-Kirillov
dimension d[h], we introduce an equivalence relation on the set F(n) by

h
j <=> h takes the same value on the segment [i, 1].

Take a complete system Ih F(n)of representatives of the coset space
F(n) /

h
", and let h" F(n)\ I F(n- [h I), be the unique bijection such

that
< j= h(i) < h(J) for i, j F(n) \ Ih,

where hi’-- # (Ih). We define Rh fl(n [hi) by Rh h . Note
that Rh is independent of the choice of a set of representatives I.

Applying R repeatedly, we obtain from each h II(n) a finite sequence
(R(h))0 of elements of//with

(8.2) R(h) H(n(h)), n(h) n- __- R(h)I.
Here is the non-negative integer such that IR (h) n(h) > O.

Theorem 4. The Gelfand-Kirillov dimension of an h 1-l(n)
+q=nl-I,(n > O) is given as

(8.3)
d[h] (1/2)" : (2nk(h) rk) (rk 1) (1/2)" (n (2k -+- 1)r)

k=O k=O

with r R(h) I, by means of the finite sequences (R(h))ok< and

(n(h))o< in (8.2).
Example. CASE OF G S U(p, 2) (p _> 2). In this case, the set H,2 is

divided into 7 subfamilies according to the positions of two elements il, i
F(n) such that h(i) h(i) b, and the corresponding quantities
(r)0<< and d[h] are given explicitly as follows.
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V
Vl

(h(i))i (rk)k d[h]

(bba...a) (2,2,1,... ,1) 2p
(ha...aba...a) (4,1,... ,1) 3p

(ba...ab) (3,1,...,1) 2p 4- 1
(3,3,1,...,1) ( _> 4)

(3,2) (p 3) 8(a. .abba. .a)
(3,1) ( 2)

(a...aba...aba...a) (p >- 3) (5,1,...,1) 4p- 2
(a...aba...ab) (4,1,... ,1) 3p

(a...abb) (2,2,... ,1) 2p

The details of this note will appear elsewhere.
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