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1. Introduction. Let G be a connected semisimple Lie group with fi-
nite center, and K be a maximal compact subgroup of G. The corresponding
complexified Lie algebras are denoted respectively by g and £. We assume
Harish-Chandra’s rank condition rank G = rank K, which is necessary and
sufficient for G to have a non-empty set of discrete series, or of square-
integrable irreducible unitary representations of G.

In this paper, we describe the associated varieties of Harish-Chandra
(g, K)-modules of discrete series, by an elementary and direct method based
on [3]. The description is as in

Theorem 1. If H, is the (g, K)-module of discrete series with Harish-
Chanda parameter A = A+ o, — p, (see §3), then its associated wvariety
Y (H,) C g (see §2) coincides with the nilpotent cone K p_, which is equal to
Ad(K)p_. Here K. denotes the analytic subgroup of adjoint group G.:=
Int(@) of g, with Lie algebra ¥, and p_ = 2;c4-0, is the sum of root subspaces
@g of g corresponding to the noncompact roots B such that (A, B) < 0.

We further give in Theorem 4 an explicit formula for the Gelfand-
Kirillov dimensions d(H,) dim ¥ (H,) of discrete series in the case of unit-
ary groups G = SU(p, ¢), by specifying the unique nilpotent G.-orbits in g
which intersect p_ densely. Note that this important invariant d(H,)
coincides with the degree of Hilbert polynomial of H,.

We know that Theorem 1 can be deduced from deep results in [1, III]
and [4] by passing to D-module via Beilinson-Bernstein correspondence.
However, the associated variety is an object attached directly to each finitely
generated U(g)-module. From this reason, we give here a direct path to the
theorem avoiding the above detour by D-module. Our proof of Theorem 1 is
simple in the sense that it uses only some basic results of [3] on the realiza-
tion of H, as the kernel space of differential operator 9, on G/K of
gradient-type. Nevertheless, this method gives us new conclusions also
(Theorem 3). For instance, we find that the associated variety of discrete
series can be expressed in terms of the symbol mapping of ,.

2. Associated varieties for U(g)-modules. Let U(g) be the enveloping
algebra of g, and (U,(g)) o be the natural increasing filtration of U(g),
with U,(g) the subspace of U(g) generated by elements X™(0 < m < Kk,
X € g). We identify the associated graded ring gr U(g) = @D ,5 , U, (@) /
U,_1(g) (U_(g) := (0)) with the symmetric algebra S(g) = D,-, S*(g) of
g in the canonical way. Here Sk(g) denotes the homogeneous component of
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S(g) of degree k.

For a finitely generated U(g)-module H, take a finite-dimensional sub-
space H, of H such that H = U(g) H,, and set H, := U, (@ H,(k = 1,2,...).
Then (H,), gives an increasing filtration of H, and corresponding one gets a
finitely generated, graded S(g)-module M =& ,. M, with M, = H,/
H,_ .

The annihilator ideal Anng,M :={D € S(g) | Dv =10 (V v € M)} of
M in S(g) defines an algebraic cone in g:

(2.1) V(H) :={X € g|f(X) =0 (YfE Anng, M)},

which is independent of the choice of a subspace H, Here S(g) is viewed as
the polynomial ring over g through the Killing form of g. The variety
Y (H) and its dimension d(H) := dim ¥ (H) are called respectively the
associated variety and the Gelfand-Kirillov dimension of H (cf. [5, 6, 8]).

3. Discrete series for G. We now fix some notation on the discrete
series representations of G (cf. [2]). Take a compact Cartan subgroup T of G
contained in K. Let 4 be the root system of g with respect to the complex-
ified Lie algebra £ of 7. The totality of compact (resp. noncompact) roots in 4
will be denoted by 4, (resp. 4,). Fix once and for all a positive system A: of
A,. Let 5 be the set of A7 -dominant, 4-regular linear forms A on ¥ such that
A + p is T-integral through the exponential map. Here p 1= (1/2) 2 s+ @
with 4, = {a € 4| (4, @) > 0}.

By Harish-Chandra, there exists a natural bijective correspondence, say
A— m,, from E onto the set of (equivalence classes) of discrete series repre-
sentations of G. By taking the K-finite part for m,, one gets an irreducible
Harish-Chandra (g, K)-module, which we denote by H, from now on.

For a A:—dominant, T-integral linear form u € f*, let (z,, V,) denote
the irreducible K-module with highest weight y. Set for a A € 5,

(3.1) A:=A—p,+ p, with p, 1= (1/2) 'ZaeA; A, 0y "= 0~ 0O

Then the 7,, looked upon as a K-module, contains 7, with multiplicity one,
and the highest weight of any K-type of 7, is of the form: A + 2,4+ B,
with integers n, = 0. We call 7, the lowest K-type of 7.

4. (S(g), K)-modules Gr & (7). For a finite-dimensional K-module
(z, V), let 4 (7) be the space of real analytic functions f : G— V satisfying
flgk) = (k)" f(g) (g € G, k € K). The group G acts on &(7) by left
translation, and & (7) becomes a U(g)-module through differentiation. Let
g = £ D p be the complexified Cartan decomposition of g. Setting for each in-
teger k = 0,

4.1) dg:={fed@|X"NQ) =0 (VXEp, 0< Vm < k)

and 4, ‘= A (7) for k<0, one gets a decreasing K-stable filtration
(A 1)) kez of 4 (1) such that U, (@) ) < A _ for k, m = 0, and corres-
pondingly we have a graded (S(g), K)-module

(4.2) Grd(n) =D, Ay /Ay

Now take two bases (X))i_; and (X;");_; to the vector space p such that
B(X;, X,") = 8, (Kronecker's &) for the Killing form B of g. We put

()= Ty n QD (X' XHA) € S RV (FE A,
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where X" = X'--- X2, (X™) = (X)) (XF)™ and v! = y,!---p! for
multi-indices v = (v, . . . ,vy) of length |v|:i=v, + -+ +p, =k + 1.
Observe that ¢,(f) is independent of the choice of (X,); and (X,"),, and that
¢, naturally gives a K-isomorphism:

(4.3) Lidg /Ay = STV,

where K acts on S**'(p) through the adjoint action.

Lemma 1. The map 7:= D ,7, gives a graded (S(g), K)-isomorphism
from Gr 4 () onto S(p) @ V, where S(g) acts on S(p) Q@ V by differentiation:
Y X*®v) =kBX, NDX"'Quv for YEG X' Qve S QV k=
0,1,...).

We identify Gr & (7) with S(p) @ V by this isomorphism Z.

5. Operators 9, and graded modules Gr H,. Since the discrete series
H, contains the lowest K-type (7;, V), A = A — p, + p,, with multiplicity
one, there exists a unique, up to scalar multiples, (g, K)-module embedding
H, <, d(r). We regard H, as a submodule of & (7;) through this embed-
ding. Then one gets a graded (S(g), K)-submodule of Gr 4 (z,):

GrH,:= @D, Hy N o)/ (Hy O A pr)
through the decreasing filtration & 4, of & (z,) in (4.1).

Using the bases (X,)_, and (X;")_, of p in §4, we set for f € (7)),
(5.1) Vif(@) i=Zi_ Ry, f(@ ® X (g€ 0,
where R, denotes the left G-invariant differential operator on G correspond-
ing to D € U(g). Then V, does not depend on the choice of dual bases, and
it defines a first order, left G-invariant differential operator from #(7;) to
A (r, @ Ad,). Here Ad, denotes the adjoint representation of K on p.

Let (z;, V;%) be respectively the K-submodules of V, @ p generated by
highest weight vectors of weights A = 8 for some 8 € A;' =4, N A", and
P,: V,— V, be the projection along the decomposition V, @ p = V," ® V, .

The above V;, composed with P, yields a G-invariant differential oper-
ator @, from & () to A (7;):

(5.2) D,f(@ =P (V,f(@) (fe d(7)).
Passing to the gradation, we get an (S(g), K)-module map
(5.3) Gr[2]:SP RV, =Grd(r) = Grd(z;) =SP)I RV, .

It follows from results of Schmid, Hotta-Parthasarathy and Wallach that
the L’-kernel of 9P, realizes the discrete series 7w, for each A € E. In order
to prove Theorem 1, we employ Gr[%@,] rather than @, itself, and use the fol-
lowing

Theorem HP (cf. [3]). One has Gr H, = Ker(Gr[9D,]) provided the
lowest hightest weight A = A — p, + p, of H, is sufficiently A -regular.

6. Outline of proof of Theorem 1. FirsT STEP. Let H A* be the K-finite
dual of discrete series H,. Note that H, = —wa 3s (g, K)-modules, where

w, is the element of Weyl group of 4, such that w,4; = — A;. We are going
to prove
(6.1) V(H) = Kep, = Ad(K)p, with p, '= e 65

which is equivalent to the claim of Theorem 1.
First, Theorem HP allows us to deduce the following
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Proposition 1. For sufficiently A,-vegular A = A — p, + p,, the associ-

ated variety V (H)) of H, is expressed by means of Grl®D,] as
V(HY) = {X € g|fX) = 0(VfE Anng,Ker(Gr[®,1)}.

SecoND STEP. Let v, be a nonzero highest weight vector of V,. For each
integer k = 0, let Q; (1) denote the K-submodule of S*(p) ® V, generated
by subspace S*(p,) ® v,. Then one easily observes that
(6.2) Ker(Gr[2,]) N (S*(n) ® V) 2 QD).

We can prove the following proposition with the aid of [3, Lemma 5.2].

Proposition 2. For each k = 0, there exists a constant ¢, > O for which
the equality holds in (6.2) if (A, @) > ¢,(Ya € A]).

TurDp STEP. Let £(Kcp,) = {f€ S(@ | f(X) =0(V X € Kcp,)} be
the ideal of S(g) defined by the cone K. p,. Noting that this ideal is finitely
generated since S(g) is Noetherian, we deduce from Proposition 2,

Theorem 2. One has Anng,Ker(Gr[9,]) < L(Kcp,) for every 2 = A
— 0. + 0, Moreover the equality holds in this inclusion if the parameter A is
sufficiently A, -regular.

FiNaL STeP. Let B be the Borel subgroup of K, with Lie algebra £ +
Zae‘,; 8. Notice that p, is B-stable and that K. = Ad(K) B by the Iwasawa
decomposition of K.. We then find that K.p, = Ad(K)p, is a closed subset
of g because of the compactness of K.

Now Proposition 1 and Theorem 2 yield the desired (6.1) for sufficently
A, -regular 4. With the Zuckerman translation principle in mind (cf. [7, I,
3.4]), we conclude that (6.1) holds for every A. This completes the proof of
Theorem 1.

7. The above discussion leads us also to the following conclusions.

Theorem 3. Assume that A be sufficiently A, -regular. Then,

(1) the ammihilator ideal of S(g)-module Gr H, coincides with its radical.

(ii) One has V(H)) = {X€p|P,w®X) # 0 (3v € V,\ (0)).

We remark that V,®@p 2 (v, X) » P,(0 @ X) € V, is just the (com-
plexified) symbol mapping of @, at the origin 0 = K € G/K.

8. Gelfand-Kirillov dimensions d(H,) for SU(p, 9. By applying
Theorem 1, we can give an explicit formula for the Gelfand-Kirillov dimen-
sions d(H,) = dim K.p_ of discrete series for G = SU@p, ¢ (n = p + ¢,
q>0).

8.1. Realize the group G as

=g SLin, O 'gle =LY win I, = (¢ °,),
q
where I, is the identitiy matrix of degree 7, and 'g (resp. £) denotes the trans-
posed (resp. the complex conjugate) of a matrix g Then we have g = 8l(n, C)
and t = {Z = diag(¢,,...,t,) | t, € C, tr Z = 0}. The root system A4 (resp.
A4, < A) of g (resp. £) with respect to t is of type A,_, (resp. A,_; X A,_)),
and it is given respectively by
A={e;|1<i,j<m i+, A, ={e;€Al1<4i,j<porp<i,j<n}

with ¢,;(Z2) = t, — t(Z € 1t).

Fix a positive system A, := {e;; € A.|i <j} of A, Let II,, be the
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totality of maps 4 from F(n) := {1,2,...,n} to the set {a, b} of two ele-
ments @ and b, such that # (h'({a})) = p and # (W'({B})) = ¢, where
# (S) denotes the cardinal number of a set S. For an h € II,, arrange the
elements of 4~ ({a}) and A~ ({B}) respectively as
(w(), w2),...,w@®) with w(l) < w2) < ... < w®),

wp+ 1), wp+2),...,ww) withwp+1) <wp+2)<... <wh,
and we put
(8.1) A7) = {e; € Al wk) < w())
through this w. Then we easily find that A+ AT (h) gives a one-one corres-
pondence from IT, , onto the set of positive systems of 4 including 4;.

Now let h € II,, Take a discrete series (g, K)-module H, with
A" (h)-dominant parameter A € 5. By Theorem 1, we see that d[h] :=
d(H,) is independent of the choice of such a A. The map II,, > h—
d[h] completely describes the Gelfand-Kirillov dimensions for discrete
series of G = SU(p, @).

We put IT:= U,_, II(n) (disjoint union), where the set IT(n) :=
U jiq=nd,, consists of all mappings from F(n) to {a, b}. Extend h— dl[h],
defined on each II, ;, to a function d[-] on IT in the canonical way.

8.2. Let h€ II(n) (n > 0). In order to specify the Gelfand-Kirillov
dimension d[A], we introduce an equivalence relation 2 on the set F(n) by

i~ j © h takes the same value on the segment [z, j].
Take a complete system I, € F(n) of representatives of the coset space
F(n)/~, and let £, : Fm) \I,~ F(n — | h|), be the unique bijection such
that
i <je 0 <0G fori,j€ Fm)\ I,

where | h]:= # (I,). We define Rh € I(n — | h|) by Rh:= h-{;". Note
that Rh is independent of the choice of a set of representatives I,.

Applying R repeatedly, we obtain from each # € II(n) a finite sequence
(R*(1)) g4 <, of elements of IT with .
(8.2) R*(n) € O(n, (), n(h) =n— ;0| R (W) |.
Here [ is the non-negative integer such that | R' (%) | = n,(h) > 0.

Theorem 4. The Gelfand-Kirillov dimension of an h € [I(n) =
U psgendd, ,(n > 0) is given as

(8.3)
dlhl = (1/2)- 2 @n,) — r)(r, — 1) = (1/2) (® — ki @k + D7)
=0

k=0
with 7, =| R “h) |, by means of the finite sequences (R k(l’t))oS k<: and
1, (W) <<, i (8.2).

Example. Case oF G = SU(p, 2) (p = 2). In this case, the set IT,, is
divided into 7 subfamilies according to the positions of two elements ¢, 7, €
F(n) such that k(i) = h(i,) = b, and the corresponding quantities
(7)) o<x<; and d[h] are given explicitly as follows.
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type (h(®); (r,), dlh]
I (bba. . .a) 2,2,1,...,1) 2p
I (ba...aba...a) 4,1,...,1) 3p
m (ba...ab) 3,1,...,1) 2p+1
3,3,1,...,.1) p=4) | 4p— 4
I\ (a...abba...a) 3,2) (»p = 3) 8
3,1) @ =2) 5
\% (a...aba...aba...a) (p = 3) 5,1,...,1) 4p — 2
VI (a...aba...ab) 4,1,...,1) 3p
VI (a...abb) 2,2,...,1) 2p

The details of this note will appear elsewhere.
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