65. A Constructive Approach to the Law Equivalence of Infinitely Divisible Random Measures

By Kazuyuki Inoue
Department of Mathematics, Faculty of Science, Shinshu University
(Communicated by Kiyosi ITÔ, M. J. A., Nov. 14, 1994)

We are concerned with our method to construct infinitely divisible random measures on \boldsymbol{T} based on Poisson random measures on $\boldsymbol{S}=\boldsymbol{T} \times$ ($\boldsymbol{R} \backslash\{0\}$). As an application we discuss the equivalence problem for infinitely divisible random measures on \boldsymbol{T}.
§1. Preliminaries. Let \boldsymbol{T} be an arbitrary nonempty set and \mathscr{T} be a δ-ring of subsets of \boldsymbol{T}. We assume there exists an increasing sequence $\left\{\boldsymbol{T}_{n}\right.$; $n \geq 1\} \subset \mathscr{T}$ with $\boldsymbol{T}=\cup_{n=1}^{\infty} \boldsymbol{T}_{n}$ and $\{t\} \in \mathscr{T}$ for each $t \in \boldsymbol{T}$. Let $\boldsymbol{\Lambda}=$ $\{\Lambda(A) ; A \in \mathscr{T}\}$ be an infinitely divisible random measure (or ID random measure) on \boldsymbol{T} with no Gaussian component, which is defined on a basic probability space $(\Omega, \mathscr{F}, \boldsymbol{P})$ (see [3]). In other words, $\boldsymbol{\Lambda}$ is a real stochastic process characterized by

$$
\begin{equation*}
\boldsymbol{E}[\exp (i z \Lambda(A))]=\exp \left[i z v(A)+\iint_{A \times \boldsymbol{R}_{0}} g(z, x) M(d t d x)\right] \tag{1.1}
\end{equation*}
$$

$$
(z \in \boldsymbol{R}, A \in \mathscr{T})
$$

where $g(z, x)=\exp (i z x)-1-i z x \mathbf{1}_{J}(x), J=(-1,1)$ and $\boldsymbol{R}_{0}=\boldsymbol{R} \backslash\{0\}$. Here v is an \boldsymbol{R}-valued signed measure on \mathscr{T} and M is a measure on $\boldsymbol{S}=T$ $\times \boldsymbol{R}_{0}$ satisfying

$$
\begin{equation*}
\iint_{A \times \boldsymbol{R}_{0}}\left(1 \wedge x^{2}\right) M(d t d x)<\infty \quad(A \in \mathscr{T}) \tag{1.2}
\end{equation*}
$$

We mean by $\boldsymbol{\Lambda}={ }^{d}[v, M]$ that the probability law of $\boldsymbol{\Lambda}$ is determined by parameters v and M. We denote by \boldsymbol{P}_{A} the probability measure on a measurable space $\left(\boldsymbol{R}^{\mathscr{T}}, \mathscr{F}\left(\boldsymbol{R}^{\mathscr{T}}\right)\right.$) induced by the map $\Lambda: \Omega \ni \omega \rightarrow \Lambda(\cdot, \omega) \in \boldsymbol{R}^{\mathscr{T}}$, where $\boldsymbol{R}^{\mathscr{T}}$ is the set of all \boldsymbol{R}-valued functions on \mathscr{T} and $\mathscr{F}\left(\boldsymbol{R}^{\mathscr{T}}\right)$ is the σ-algebra on $\boldsymbol{R}^{\mathscr{T}}$ generated by all coordinate functions. The product measurable space $(\boldsymbol{S}, \mathscr{S})$ is given by $\mathscr{\&}=\sigma(\mathscr{T}) \otimes \mathscr{B}\left(\boldsymbol{R}_{0}\right)$, where $\sigma(\mathscr{T})$ is the σ-algebra on \boldsymbol{T} generated by \mathscr{T} and $\mathscr{B}\left(\boldsymbol{R}_{0}\right)$ is the Borel σ-algebra on \boldsymbol{R}_{0}. Let $\mathcal{N}=\mathcal{N}(\boldsymbol{S})$ be the totality of nonnegative (possibly infinite) integer-valued measures on $(\boldsymbol{S}, \mathscr{\infty})$. Let $\mathscr{F}^{+}(\boldsymbol{S})$ be the set of all nonnegative measurable functions on $(\boldsymbol{S}, \mathscr{\&})$. We denote by $\mathscr{B}(\mathcal{N})$ the σ-algebra on \mathcal{N} generated by all functions f^{*} on \mathcal{N} given by

$$
f^{*}(\nu)=\langle\nu, f\rangle=\int_{\boldsymbol{S}} f d \nu \quad \text { for } \quad f \in \mathscr{F}^{+}(\boldsymbol{S}) \quad \text { and } \quad \nu \in \mathcal{N} .
$$

An \mathcal{N}-valued random element ξ is called a Poisson random measure on \boldsymbol{S} with intensity M if it is defined on $(\Omega, \mathscr{F}, \boldsymbol{P})$ and its Laplace transform is given by

$$
\begin{array}{r}
\boldsymbol{E}[\exp (-\langle\xi, f\rangle)]=\exp \left[-\iint_{S}\{1-\exp (-f(t, x))\} M(d t d x)\right] \tag{1.3}\\
\text { for } f \in \mathscr{F}^{+}(\boldsymbol{S}) .
\end{array}
$$

§2. A construction of infinitely divisible random measures. In this section we shall construct a version of $\boldsymbol{\Lambda}={ }^{d}[v, M]$ based on a Poisson random measure on \boldsymbol{S}. For simplicity we may assume $M(\boldsymbol{S})>0$.

Case (I): $\boldsymbol{M}(\boldsymbol{S})<\infty$. For each $k \geq 1$, let $\left(\boldsymbol{S}^{k}, \delta^{k}, \boldsymbol{P}_{k}\right)$ be a probability space given by $\boldsymbol{P}_{k}=M(\boldsymbol{S})^{-k} M^{k}$, where we mean by $\left(\boldsymbol{S}^{k}, \delta^{k}, M^{k}\right)$ the k-fold product measure space of ($\boldsymbol{S}, \boldsymbol{\&}, M$). Then we consider a probability space $\left(\Omega^{*}, \mathscr{F}^{*}, \boldsymbol{P}^{*}\right)$ defined by

$$
\begin{equation*}
\Omega^{*}=\bigcup_{k=0}^{\infty} \mathbf{S}^{k}, \quad \mathscr{F}^{*}=\left\{A^{*}=\cup_{k=0}^{\infty} A_{k} ; A_{k} \in \delta^{k}(k \geq 0)\right\} \tag{2.1}
\end{equation*}
$$

$$
\boldsymbol{P}^{*}\left(A^{*}\right)=\exp (-M(\boldsymbol{S})) \sum_{k=0}^{\infty}(k!)^{-1} M(\boldsymbol{S})^{k} \boldsymbol{P}_{k}\left(A_{k}\right) \text { for } A^{*}=\bigcup_{k=0}^{\infty} A_{k} \in \mathscr{F}^{*}
$$

where $\left(\boldsymbol{S}^{0}, \mathscr{\delta}^{0}, \boldsymbol{P}_{0}\right)$ is the trivial probability space given by $\boldsymbol{S}^{0}=\{0\}$ and $\mathscr{S}^{0}=\left\{\emptyset, \boldsymbol{S}^{0}\right\}$. We call $\left(\Omega^{*}, \mathscr{F}^{*}, \boldsymbol{P}^{*}\right)$ the basic canonical probability space associated with $(\boldsymbol{S}, \mathscr{S}, M)$. Let $\Phi: \Omega^{*} \rightarrow \mathcal{N}$ be an $\mathscr{F}^{*} / \mathscr{B}(\mathcal{N})$-measurable map given by $\Phi(0)=0$ and

$$
\begin{equation*}
\left\langle\Phi\left(\omega^{*}\right), f\right\rangle=\sum_{t=1}^{k} f\left(p_{\imath}\left(\omega^{*}\right)\right) \quad \text { for } \quad f \in \mathscr{F}^{+}(\boldsymbol{S}) \tag{2.2}
\end{equation*}
$$

when $\omega^{*}=\left(p_{1}\left(\omega^{*}\right), \cdots, p_{k}\left(\omega^{*}\right)\right) \in S^{k}(k \geq 1)$. Then we obtain a Poisson random measure Φ on \boldsymbol{S} with intensity M with respect to \boldsymbol{P}^{*}. We define

$$
\begin{equation*}
\Lambda^{*}\left(A, \omega^{*}\right)=v(A)+\iint_{A \times \boldsymbol{R}_{0}} x \Phi\left(d t d x, \omega^{*}\right)-\iint_{A \times J} x M(d t d x) \tag{2.3}
\end{equation*}
$$

$$
\left(A \in \mathscr{T}, \omega^{*} \in \Omega^{*}\right)
$$

where we put $\Phi\left(U, \omega^{*}\right)=\left[\Phi\left(\omega^{*}\right)\right](U)$ for $U \in \&$ and $\omega^{*} \in \Omega^{*}$. Then we have

Proposition 1. The process $\boldsymbol{\Lambda}^{*}=\left\{\Lambda^{*}(A) ; A \in \mathscr{T}\right\}$ is an ID random measure on \boldsymbol{T} which is defined on $\left(\Omega^{*}, \mathscr{F}^{*}, \boldsymbol{P}^{*}\right)$ and characterized by $\boldsymbol{\Lambda}^{*}={ }^{d}$ [$v, M]$.

Case (II): $M(\boldsymbol{S})=\infty$. On account of (1.2) we can choose a sequence $\left\{\boldsymbol{S}_{n} ; n \geq 1\right\} \subset \mathscr{S}$ of disjoint subsets of \boldsymbol{S} satisfying $\boldsymbol{S}=\cup_{n=1}^{\infty} \boldsymbol{S}_{n}$ and 0 $<M\left(S_{n}\right)<\infty(n \geq 1)$. Let $\left\{M_{n} ; n \geq 1\right\}$ be a sequence of finite measures on $(\boldsymbol{S}, \mathscr{\&})$ defined by $M_{n}(U)=M\left(U \cap \boldsymbol{S}_{n}\right)$ for $U \in \mathscr{\&}$. Let us introduce an infinite product probability space

$$
\begin{equation*}
(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\boldsymbol{P}})=\prod_{n=1}^{\infty}\left(\Omega^{*}, \mathscr{F}^{*}, \boldsymbol{P}_{n}^{*}\right) \tag{2.4}
\end{equation*}
$$

where $\left(\Omega^{*}, \mathscr{F}^{*}, \boldsymbol{P}_{n}^{*}\right)$ is the basic canonical probability space associated with $\left(\boldsymbol{S}, \mathscr{\&}, M_{n}\right)$. We call ($\left.\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\boldsymbol{P}}\right)$ the canonical probability space assoacited with decomposition $M=\sum_{n=1}^{\infty} M_{n}$ on ($\boldsymbol{S}, \boldsymbol{\&}$). Then we have Poisson random measures $\Psi_{n}=\sum_{c=1}^{n}\left(\Phi \circ \pi_{l}\right)$ and $\Psi=\sum_{n=1}^{\infty}\left(\Phi \circ \pi_{n}\right)$ on \boldsymbol{S} respectively with intensities $M_{(n)}=\sum_{c=1}^{n} M_{c}$ and M. Here π_{n} denotes the n-th projection map from $\tilde{\Omega}=\left(\Omega^{*}\right)^{\infty}$ onto Ω^{*}. Now we define, for each $n \geq 1$,

$$
\begin{equation*}
\tilde{\Lambda}_{n}(A, \tilde{\omega})=v(A)+\iint_{A \times \boldsymbol{R}_{0}} x \Psi_{n}(d t d x, \tilde{\omega})-\iint_{A \times J} x M_{(n)}(d t d x) \tag{2.5}
\end{equation*}
$$

On account of the Lévy's equivalence theorem on the convergence of series with independent summands, we can find a random variable $\tilde{\Lambda}_{\infty}(A)$ to which
$\left\{\tilde{\Lambda}_{n}(A)\right\}$ converges almost surely as $n \rightarrow \infty$. Thus we have
Proposition 2. The process $\tilde{\boldsymbol{\Lambda}}_{\infty}=\left\{\tilde{\Lambda}_{\infty}(A) ; A \in \mathscr{T}\right\}$ is an ID random measure on \boldsymbol{T} which is defined on $(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\boldsymbol{P}})$ and characterized by $\tilde{\boldsymbol{\Lambda}}_{\infty}={ }^{d}[v, M]$.

In the rest of this section we are concerned with a realization of $\boldsymbol{\Lambda}$ based on the space $\mathcal{N}=\mathcal{N}(\boldsymbol{S})$. We mean by $\left(\mathcal{N}, \mathscr{B}(\mathcal{N}), \boldsymbol{Q}^{M}\right)$ a probability space given by
(2.6) $\quad \boldsymbol{Q}^{M}=\left[\boldsymbol{P}^{*}\right]_{\Phi} \quad$ in Case (I) and $\quad \boldsymbol{Q}^{M}=[\tilde{\boldsymbol{P}}]_{\Psi} \quad$ in Case (II), where $\left[\boldsymbol{P}^{*}\right]_{\Phi}$ and $[\tilde{\boldsymbol{P}}]_{\Psi}$ stand for the images of \boldsymbol{P}^{*} and $\tilde{\boldsymbol{P}}$ induced by Φ and Ψ respectively. Then the identity map I on $\left(\mathcal{N}, \mathscr{B}(\mathcal{N}), \boldsymbol{Q}^{M}\right)$ is considered as a Poisson random measure on \boldsymbol{S} with intensity M. Furthermore we can realize $\boldsymbol{\Lambda}={ }^{d}[v, M]$ in the space of \boldsymbol{R}-valued signed measures on \mathscr{T} whenever the following conditions are satisfied.
(2.7) For each $A \in \mathscr{T}$, there exists $n \geq 1$ such that $A \subset \boldsymbol{T}_{n}$;

$$
\begin{equation*}
\iint_{A \times J}|x| M(d t d x) \equiv m(A)<\infty \quad(A \in \mathscr{T}) \tag{2.8}
\end{equation*}
$$

Let $\boldsymbol{H}^{+}=\left\{H^{+}(A) ; A \in \mathscr{T}\right\}, \boldsymbol{H}^{-}=\left\{H^{-}(A) ; A \in \mathscr{T}\right\}$ and $\boldsymbol{H}=\{H(A)$; $A \in \mathscr{T}\}$ be ID random measures on \boldsymbol{T}, which are defined on $(\mathcal{N}, \mathscr{B}(\mathcal{N})$, \boldsymbol{Q}^{M}) and expressed as follows:

$$
\begin{align*}
H^{ \pm}(A, \nu) & =v^{ \pm}(A)+m(A)+\iint_{A \times \boldsymbol{R}_{0}} x^{ \pm} \nu(d t d x)-\iint_{A \times J} x^{ \pm} M(d t d x) \tag{2.9}\\
H(A, \nu) & =v(A)+\iint_{A \times \boldsymbol{R}_{0}} x \nu(d t d x)-\iint_{A \times J} x M(d t d x) \tag{2.10}
\end{align*}
$$

Here $v=v^{+}-v^{-}$stands for the Jordan decomposition of v. We put $\boldsymbol{R}_{ \pm}=$ $\{ \pm x>0\}$ and $M_{ \pm}(U)=M\left(U \cap\left(\boldsymbol{T} \times \boldsymbol{R}_{ \pm}\right)\right)$for $U \in \&$ respectively. Then we have

Theorem 1. Assume (2.7) and (2.8). Then $\boldsymbol{H}^{ \pm}$and \boldsymbol{H} are characterized by $\boldsymbol{H}^{ \pm}={ }^{d}\left[v^{ \pm}+m, M_{ \pm}\right]$and $\boldsymbol{H}={ }^{d}[v, M]$. Furthermore \boldsymbol{H}^{+}and \boldsymbol{H}^{-}are independent and also there exists a set $\mathcal{N}_{0} \in \mathscr{B}(\mathcal{N})$ with $\boldsymbol{Q}^{M}\left(\mathcal{N}_{0}\right)=1$ satisfying

$$
\begin{align*}
& H(A, \nu)=H^{+}(A, \nu)-H^{-}(A, \nu) \text { and } \tag{2.11}\\
& \\
& 0 \leq H^{ \pm}(A, \nu)<\infty \quad\left(A \in \mathscr{T}, \nu \in \mathcal{N}_{0}\right) .
\end{align*}
$$

§3. The law equivalence of infinitely divisible random measures. In what follows we discuss the equivalence problem for ID random measures on \boldsymbol{T} based on the method stated in Section 2. Given σ-finite measures μ and ν on a measurable space $(\boldsymbol{E}, \mathscr{E})$, we mean by $\mu \sim \nu$ that μ and ν are equivalent, i.e., mutually absolutely continuous. The Hellinger-Kakutani distance and inner product are defined respectively by

$$
\operatorname{dist}(\mu, \nu)=\left[\int_{\boldsymbol{E}}(\sqrt{d \mu}-\sqrt{d \nu})^{2}\right]^{1 / 2} \text { and } \varrho(\mu, \nu)=\int_{\boldsymbol{E}} \sqrt{d \mu d \nu}
$$

Theorem 2. Let $\boldsymbol{\Lambda}_{1}$ and $\boldsymbol{\Lambda}_{2}$ be ID random measures on \boldsymbol{T} given by $\boldsymbol{\Lambda}_{j}={ }^{d}$ $\left[v_{j}, M^{(j)}\right](j=1,2)$. Then $\boldsymbol{P}_{\Lambda_{1}} \sim \boldsymbol{P}_{\Lambda_{2}}$ if the following three conditions hold simultaneously:
(E.1) $\quad M^{(1)} \sim M^{(2)}$,
(E.2) $\operatorname{dist}\left(M^{(1)}, M^{(2)}\right)<\infty$,

$$
\begin{equation*}
v_{1}(A)-v_{2}(A)=\iint_{A \times J} x\left\{M^{(1)}-M^{(2)}\right\}(d t d x) \quad(A \in \mathscr{T}) \tag{E.3}
\end{equation*}
$$

§4. The outline of the proof of Theorem 2. First we construct versions of $\boldsymbol{\Lambda}_{1}$ and $\boldsymbol{\Lambda}_{2}$ based on Poisson random measures on \boldsymbol{S} along the procedure stated in Section 2. For simplicity we devote ourselves to the case that $\boldsymbol{M}^{(j)}(\boldsymbol{S})=\infty(j=1,2)$. Then we can find a decomposition $\boldsymbol{S}=\cup_{n=1}^{\infty} \boldsymbol{S}_{n}$ with $0<M^{(j)}\left(S_{n}\right)<\infty(n \geq 1, j=1,2)$. For each $j=1$, 2 , we construct the canonical probability space

$$
\left(\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\boldsymbol{P}}^{(j)}\right)=\prod_{n=1}^{\infty}\left(\Omega^{*}, \mathscr{F}^{*}, \boldsymbol{P}_{n}^{*(j)}\right)
$$

associated with decomposition $M^{(j)} \stackrel{n=1}{=} \sum_{n=1}^{\infty} M_{n}^{(j)}$ on (S, \&), where we put $M_{n}^{(j)}(U)=M^{(j)}\left(U \cap S_{n}\right)$ for $U \in \mathscr{A}$. Now (E.1) implies $M_{n}^{(1)} \sim M_{n}^{(2)}$ and also $\boldsymbol{P}_{n}^{*(1)} \sim \boldsymbol{P}_{n}^{*(2)}$ for each $n \geq 1$. Further (E.2) implies
(4.1) $\quad \Pi_{n=1}^{\infty} \varrho\left(\boldsymbol{P}_{n}^{*(1)}, \boldsymbol{P}_{n}^{*(2)}\right)=\exp \left[-(1 / 2) \operatorname{dist}\left(M^{(1)}, M^{(2)}\right)^{2}\right]>0$.

Therefore we obtain $\tilde{\boldsymbol{P}}^{n(1)} \sim \tilde{\boldsymbol{P}}^{(2)}$ by the Kakutani's theorem on the equivalence of infinite product probability measures (see [2]). By applying Proposition 2, we obtain stochastic processes $\tilde{\Lambda}_{\infty}^{(j)}=\left\{\tilde{\Lambda}_{\infty}^{(j)}(A) ; A \in \mathscr{T}\right\} \quad(j=1,2)$ satisfying the following two conditions.
(4.2) $\tilde{\boldsymbol{\Lambda}}_{\infty}^{(j)}$ is defined on ($\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\boldsymbol{P}}^{(j)}$) and characterized by $\tilde{\boldsymbol{\Lambda}}_{\infty}^{(j)}={ }^{d}\left[v_{j}, M^{(j)}\right]$; (4.3) For each $A \in \mathscr{T}$, the sequence $\left\{\tilde{\Lambda}_{n}^{(j)}(A) ; n \geq 1\right\}$ converges almost surely to $\tilde{\Lambda}_{\infty}^{(j)}(A)$ with respect to $\tilde{\boldsymbol{P}}^{(j)}$ as $n \rightarrow \infty$, where we put $M_{(n)}^{(j)}=\sum_{t=1}^{n} M_{\iota}^{(j)}$ and

$$
\begin{array}{r}
\tilde{\Lambda}_{n}^{(j)}(A, \tilde{\omega})=v_{j}(A)+\iint_{A \times \boldsymbol{R}_{0}} x \Psi_{n}(d t d x, \tilde{\omega})-\iint_{A \times J} x M_{(n)}^{(j)}(d t d x) \tag{4.4}\\
(A \in \mathscr{T}, \tilde{\omega} \in \tilde{\Omega})
\end{array}
$$

On account of (E.2) and (4.4) we have the following equations:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \iint_{A \times J} x\left\{M_{(n)}^{(1)}-M_{(n)}^{(2)}\right\}(d t d x)=\iint_{A \times J} x\left\{M^{(1)}-M^{(2)}\right\}(d t d x) \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\Lambda}_{n}^{(1)}(A, \tilde{\omega})-\tilde{\Lambda}_{n}^{(2)}(A, \tilde{\omega})=v_{1}(A)-v_{2}(A)-\iint_{A \times J} x\left\{M_{(n)}^{(1)}-M_{(n)}^{(2)}\right\}(d t d x) \tag{4.6}
\end{equation*}
$$ for $A \in \mathscr{T}, \tilde{\omega} \in \tilde{\Omega}$, and $n \geq 1$. Therefore combining (E.3) with $\tilde{\boldsymbol{P}}^{(1)} \sim \tilde{\boldsymbol{P}}^{(2)}$ yields that $\tilde{\Lambda}_{\infty}^{(1)}(A)=\tilde{\Lambda}_{\infty}^{(2)}(A)$ a.s. with respect to $\tilde{\boldsymbol{P}}^{(1)}$ and also $\tilde{\boldsymbol{P}}^{(2)}$. Now putting $\Theta(A, \tilde{\omega})=\tilde{\Lambda}_{\infty}^{(1)}(A, \tilde{\omega})$ for $A \in \mathscr{T}$ and $\tilde{\omega} \in \tilde{\Omega}$, we have a process $\boldsymbol{\Theta}=$ $\{\Theta(A) ; A \in \mathscr{T}\}$ which is characterized by

(4.7) $\quad \boldsymbol{\Theta}={ }^{d}\left[v_{j}, M^{(j)}\right] \quad$ with respect to $\tilde{\boldsymbol{P}}^{(j)} \quad(j=1,2)$.

This implies the equalities $\boldsymbol{P}_{\Lambda_{j}}=\left[\tilde{\boldsymbol{P}}^{(j)}\right]_{\boldsymbol{\theta}}(j=1,2)$, where $\left[\tilde{\boldsymbol{P}}^{(j)}\right]_{\theta_{\mathscr{T}}}$ stands for the image of $\tilde{\boldsymbol{P}}^{(j)}$ induced by the map $\Theta: \tilde{\Omega} \ni \tilde{\omega} \rightarrow \Theta(\cdot, \tilde{\omega}) \in \boldsymbol{R}^{\mathscr{T}}$. Thus we obtain the desired relation $\boldsymbol{P}_{\Lambda_{1}} \sim \boldsymbol{P}_{\Lambda_{2}}$ from $\tilde{\boldsymbol{P}}^{(1)} \sim \tilde{\boldsymbol{P}}^{(2)}$.

Acknowledgement. The author thanks Professors G. Kallianpur and S. Cambanis for the hospitality of the University of North Carolina, where much of this work was carried out in 1993.

References

[1] O. Kallenberg: Random Measures. 4th ed., Academic Press (1986).
[2] S. Kakutani: On equivalence of infinite product measures. Ann. Math., 49, 239-247 (1948).
[3] B. S. Rajput and J. Rosinski: Spectral representations of infinitely divisible processes. Probab. Th. Rel. Fields, 82, 451-487 (1989).

