
No. 8] Proc. Japan Acad., 70, Ser. A (1994) 267

Subgraphs of W.graphs and the 3-parallel Version
Polynomial Invariants of Links

By Mitsuyuki OCHIAI * and Jun MURAKAMI* *
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1994)

1. Introduction. The purpose of this paper is to give a method to com-
pute the 3-papallel version of a special type of 2-variable Jones polynomials
of 3 and 4 braids which can distinguish Kinoshita-Terasaka knot KT and
Conway’s l 1-crossing knot KC. Generally speaking, it is necessary for a
direct calculation of the 3-parallel version of a 2-variable Jones polynomial
of a 4 braid of length r to compute about 10r many times products of mat-
rixes of size n up to 7700. But our method needs the similar products of
matrixes of size n up to only 98.

Freyd and Yetter, Lickorish and Millet, Ocneanu, and Hoste discovered
in [1] a two-variable polynomial invariant PL(t, X) of an oriented link L.

Let L be an oriented link, and L+, L_ and L0 be links that have regular
projections identical, except in one crossing where they are as in Fig. 1:

L/ L_

Fig. 1

Then Pr(t, X) is the Laurent polynomial defined by the following Conway
relation:

(1) Pz(t, X) 1, if L is the trivial knot.
(2) t-P+- tP_ )Po"
On the other hand, for an n-braid ce in the braid group B., let

Xz(q, 2) = -(1 q)
(v-)etr(Tr(a))

where L is the closed braid of or, e is the exponent sum of cr and 7r is the
representation of Bn in the Hecke algebra H(q, n)sending the standard
generators of Bn to those of H(q, n). Then the invariant satisfies Pz(t, X)

Xz(q, /) if t -f and X

It is already known [6], [9] that no polynomial invariants of Conway
type can distinguish two different mutant knots. But one of the author found
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in [8] that the 3-parallel version of 2-variable Jones polynomials distinguish

certain mutant knots, and Morton and Traczyk also did in [9] that similar
invariants distinguish the knots KT and KC by the direct calculation of the
3-parallel version of 2-variable Jones polynomials using Conway relation.

We would like to thank Professor A. Gyoja for useful discussions and
advices.

2. a-parallel version of polynomial invariants of links. Let L be a link, c
be an element of the braid group Bn whose closure is isotopic to L, and/ be
the 3-parallel version of c (see Section 1.2 of [8]). Then the following Lau-
rent polynomial

(a) ( 1--/q )
n-1

Z (q, k) 4-(1 q) (/-)tr(Tr(fl))

is a polynomial invariant of L. Let H(q, n) be the Iwahori-Hecke algebra of
type Au_ with the standard generators g, ga,..., g,_ and a, a,...,
be the standard generators of B. Let n(a’CB, - H(q, an) be the algebra

homomorphism defined by
g(a (a) g(ai- 2, 3i- 1)-ag(3i, 3i + 2)g(3i- 1, 3i + 1)g(3i- 2, 3i)

(1 s i <-- n- 1)
(3)

where g(i,j)--gg+" "g. Then the computation of XL (q, 2)derives
from computing the trace tr(a) (a)).

In [10], the irreducible representations of H(q, 9)and H(q, 12)are
given. Thus at present, we can compute ZL (q, ) for every link L whose
braid form has braid index of 3 or 4. But no direct calculations of Zz (q, 2)
is well adapted for computer calculations as it involves product calculations
of matrixes with very big size.

3. Certain subgraphs of W-graphs. Let A(an) be the set of partitions
of a positive integer an, Y be a Young diagram associated with A(an),
G(Y) be the W-graph with the vertex set V(Y) {X, Za,..., Xs} labelled
by I(G(Y)) {I(x,), I(z.),...,I(Xs)} corresponding to Y, where I(X) is
the I-invariant of Z (see the definition in [3,4]). By making use of the
results in [10], we get the list of G(Y) for Young diagram Y associated with
A (9) and A(12). We define a subset Va(Y) of V(Y) as follows"

Each vertex x in V(Y) is included in Va(y) if and only if I(x) contains
all numbers k in I {1, 2,..., an} with k -= 2 (moda) and no numbers k
in I with k i (rood 3).

Let ry be the representation given by the W-graph G(Y). Then, by
using property of W-graphs, we know that the restriction to rrr on the
subspace U spanned by the basis corresponding to V(Y) gives a reprsenta-

(3) (3)
tion of B. Let tot denote the trace of this representation, then to r corres-
ponds to (ou. in Theorem 1.4.0 of [8] where /2 (resp. v) corrresponds to the
irreducible representation of H(q, an) (resp. H(q, 3))parametrized by Y

(3) *(resp. (2.1)). Hence, by Theorem 1.5.1 of [8], the following Xr (q, ) is an
invariant of knots.

(a, ( 1--2q )n-1 (3)

Zt (q, 2) -(1-- q)
(/-) Er Wr(q, z)tOy
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(see the definition of W,(q, z) in [5]).
Let K and K’ be two mutant knots. Then, by using Theorem 1.5.1 and

6 2.4 in [8], ya ya ya
"K (q, 2) -r’ (q, 2) if and only if Xa) (q, 2)* := -,r, (q, 2)

y (3)
The maximal size of matrixes we need to compute -=r (q, 2) is much less

y (3) y 3)
than that of--r (q, 2) and we can compute--r (q, 2) actually. To simplify
the computation, we specialize 2 qr for a positive integer r. If r---- 1 or 2,

y (3) * y (3) *we can show that "K (q, ’) r’ (q, 2) or any mutant knots K and K.
y (3)Next we tried to compute "L (q, qa) for certain mutant knots:

--1 --1 2 --1 4KT (resp. KC) is the closure of a braid aaa aeaa aeaa aa. (resp.
--1 --1

0.10.a 0.20.a 0.20.310.10.-3). We have the following result, where x q
*

r (q, q) x^78 -t- 2x^76 3x^74 -t- 6x^72 6x^70 + 3x^68
+ 4x^66 14x^64 -t- 32x^62 53x^60 -t- 68x^58 92x^56 -t- 112x^54

120x^52 -t- 108x^50- 106x^48 + 97x^46 66x^44 + 19x^42
+ 35x^40- 86x^38 -t- 172x^36- 241x^34 -t- 313x^32 351x^30
-t- 384x^28 368x^26 -t- 313x^24 258x^22 + 160x^20 60x^18

75x^16 + 169x^14- 273x^12 + 356x^10- 388x^8 -t- 399x^6
364x^4 + 328x^2 232 -t- 146x ^ 2 73x ^ 4 + 4x ^ 6 -t- 54x ^
8- 107x^ 10 + l19x^ 12 131x^ 14 -t- 130x ^ 16 l19x ^
18 + 100x^ 20 78x ^ 22 -t- 60x ^ 24 33x ^ 26 -t- 16x ^

^ ^ 38 2x28--7x^-30-x --32d-6x --34+6x^-36+3x^ ^
A--40+x --42
*

c (q, q) x^78 + 2x^76 3x^74 + 6x^72 7x^70 + 8x^68
7x^66 + 3x^64 -t- 7x^62 19x^60 -t- 28x^58 50x^56 -t- 73x^54
87x^52 + 83x^50 93x^48 + 97x^46 79x^44 -t- 46x^42 8x^40
25x^38 -t- 96x^36 151x^34 -t- 211x^32 246x^30 + 283x^28
279x^26 + 242x^24- 207x^22 + 134x^20 60x^18 49x^16

+ 118x^14- 202x^12 + 267x^10- 287x^8 + 294x^6- 262x^4
-t- 238x^2 156 + 85x ^ 2 30x ^ 4 23x ^ 6 + 67x ^ 8
107x^ 10-t- 106x^- 12- 106x^- 14 + 97x^- 16- 80x^- 18
58x^-20-38x^-22+26x^ 24--8x^-26-x --28--4x^-30

6x^ 32 + 7x^ 34 6x^ 36 -t- 3x^ 38 2x^ 40 + x^ 42
Let K1, K. be mutant knots such that K (resp. K.) has a braid form

--1 --1 --3 --2 --1 2 -1 --1 -3 3 --2 -1
0"i 0.2 0.30.2 0.10.2 0.30.20.10"30.2 0.3 (resp. 0.1 0.2 0.30.2 0.10.20.30.20.10.3 0.2 0.3)"
X (3) * ^9, (q, q3) =x^94--2x 2-t-3x^90--6x^88+6x^86--4x^84
+ 8x^80- 20x^78 -t- 33x^76 38x^74 -t- 51x^72 57x^70 -t- 50x^68
32x^66 + 14x^64 3x^62 38x^60 -t- 71x^58- 104x^56

113x^54- 126x^52 -t- 128x^50- 95x^48 -t- 76x^46- 24x^44 -t- x^42
+ 56x^40 66x^38 + 71x^36 89x^34 + 70x^32 79x^30 + 40x^28

60x^26 -t- 39x^24 42x^22 -t- 53x^20 47x^18 -t- 50x^16 19x^14
-t- 30x^12 6x^10 14x^8 -t- 48x^6 59x^4 + 69x^2 81 -t- 77x^
--2 64x^-4-t-40x^-6-21x^-8-6x^-10+22x^-12
--29x^- 14+29x^-16-26x^-18+20x^-20- 11x^-22
6x^- 24 + 2x^- 26

3)[ $ ^9tq, q3) =x^94--2x 2+3x^90--6x^88+6x^86--4x^84
8x80 21x^78 + 38x^76 49x^74 + 68x^72 82x^70 + 84x^68
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72x^66 + 56x^64 42x^62 5x^60 + 46x^58 91x^56 + 113x^54
^4139x^52 + 155x^50- 138x^48 + 137x^46- 100x^44 + 91x 2-

46x^40 + 39x^38 30x^36 x^32 28x^30 + 14x^28 60x^26
65x^24- 93x^22 + 124x^20- 136x^18 + 151x^16- 124x^14
132x^12 96x^10 + 62x^8 13x^6 16x^4 + 42x^2 68 + 77x ^

2 77x^ 4 + 65x^ 6 54x^ 8 + 33x ^ 10 20x ^ 12
A A A A A A+ 11x --14--5x --16--x --18+3x --20+x --24--x --26

4. Final remarks. The first author had developed a computer software
for Apple Macintosh computers to assist researchers in Knot theory and

y (3)
recently have implemented in it an ability to calculate . (q, q) for every
3 and 4 braid L. In particular, the software can distinguish the knots KT
and KC in about 20 minutes on Macintosh Quadra 800 with 16 Mega bytes
main memory.

Futhermore we have confirmed by direct matrix calculations that the
matrixes obtained by our method satisfy all the defining relations of the
braid groups B and B4.

The software has been arranged for the ftp network server, where the
netw0k address is wuarchiveowustl.edu and which are managed by profes-
sor Earl D. Fife of Calvin College whose e-mail address is fife@calvin, edu.

Our computer program is written in C language and is available as a
complete description or else on disks with lists of all W-graphs correspond-
ing to H(q, ) for n up to 12 and all representation matrixes to compute

(q, q) for every link L whose form has braid index of 3 and 4.
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