58. Selfsimilar Shrinking Curves for Anisotropic Curvature Flow Equations

By Claus Dohmen*) and Yoshikazu GigA**)
(Communicated by Kiyosi ITô, M. J. A. , Sept. 12, 1994)

We consider a simple looking ordinary differential equation of the form

$$
\begin{equation*}
u^{\prime \prime}+u-\frac{a(\theta)}{u}=0 \text { in } \boldsymbol{R} \tag{1}
\end{equation*}
$$

with a given positive function $a(\theta)$. This equation arises in describing selfsimilar solutions of anisotropic curvature flow equations. Since θ is the argument of the normal \vec{n} of the curve, it is natural to impose 2π-periodicity for $a(\theta)$ in (1) and to ask for existence and uniqueness of 2π-periodic solutions.

The physical background of the above problem is an evolution equation for embedded closed curves $\left\{\Gamma_{t}\right\}_{t>0}$ in \boldsymbol{R}^{2} (see [10]):

Consider an equation for Γ_{t}, where the normal velocity V is given by the curvature k weighted by a direction-dependent factor $a(\theta)$, i.e.

$$
V=a(\theta) k, \quad a(\theta)=\beta(\theta)^{-1}\left(\gamma^{\prime \prime}(\theta)+\gamma(\theta)\right),
$$

where β and $\gamma^{\prime \prime}+\gamma$ are assumed to be positive, so that the equation is parabolic. γ is called the surface energy density and β is called the kinetic coefficient.

In case $a(\theta) \equiv$ const. it is well known (see [3], [4], [6] and [9]) that any initial curve becomes convex, after this it extincts in finite time, and that the type of shrinking is asymptotically similar to that of a shrinking circle $C_{t}=$ $\left(2\left(t_{*}-t\right)\right)^{1 / 2} C$, where C denotes the unit circle centered at the origin. (Here the time t_{*} is the extinction time and λC denotes the dilation of C with multiplier λ.) The curvature of the circle then is a solution of (1).

In case of more general $a(\theta)$, it was shown in [12] that selfsimilar solutions, i.e. solutions satisfying

$$
\Gamma_{t}=\left(2\left(t_{*}-t\right)\right)^{1 / 2} \Gamma
$$

and thereby equation (1), exist if $\beta(\theta) \gamma(\theta)=$ const. Then Γ defined as the boundary of the so-called Wulff-Shape W_{r}, i.e.

$$
\begin{equation*}
W_{\gamma}:=\left\{x \in \boldsymbol{R}^{2} \mid x \cdot \vec{m}(\sigma) \leq \gamma(\sigma) \text { for all } \sigma \in \boldsymbol{R}\right\} \tag{2}
\end{equation*}
$$

yields a solution Γ_{t} of the evolution problem. Here $\vec{m}(\sigma)$ denotes a unit vector whose argument equals σ.

Our existence result now shows that such selfsimilar solutions exist for arbitrary positive $a(\theta)$. To simplify the notation we notice that a 2π periodic function can be regarded as a function on the flat torus $\boldsymbol{T}:=$ $\boldsymbol{R} / 2 \pi \boldsymbol{Z}$. Thus we define
$C_{+}^{2}(\boldsymbol{T})=\left\{u \in C^{2}(\boldsymbol{R}) \mid u(\theta+2 \pi)=u(\theta)\right.$ for all $\left.\theta \in \boldsymbol{R}, u>0\right\}$.
*) Department of Applied Mathematics, University of Bonn, Germany.
**) Department of Mathematics, Hokkaido University.

Main existence theorem. Assume that $a(\theta)$ is a positive, continuous function on \boldsymbol{T}. Then there is a function $u \in C_{+}^{2}(\boldsymbol{T})$ solving (1).

The proof is based on a-priori estimates and a continuity method. We can derive a-priori bounds for solutions of (1), that only depend on the bounds of $a(\theta)$ from below and above. This enables us to apply a continuity method connecting the well known case $a(\theta) \equiv$ const. and the case of general $a(\theta)$. For details we would like to refer to [2].

Concerning uniqueness, we unfortunately have to make an additional assumption on $a(\theta)$:

Uniqueness theorem. Let $a(\theta)$ be a positive, continuous and π-periodic function in \boldsymbol{R}. Then the solution of (1) is unique.

The main tools in proving the result is a generalization of an isoperimetric inequality by Gage. This result requires the π-periodicity of $a(\theta)$.

Let us first introduce some notation: We denote the area of a set A by $m(A)$, the interior of a closed curve Γ by int Γ, the length of a curve Γ by L and its surface energy with respect to some surface energy density f by

$$
F_{f}(\Gamma)=\int_{0}^{L} f(\theta(s)) d s
$$

Here s denotes the arclength parameter and $\theta(s)$ is the argument of \vec{n} at the point $x(s)$ of the curve. We note also that the area $m(A)$, using integration by parts, can be expressed as an integral over the scalar product of the position vector x and the normal \vec{n}, the so-called support function $p(s)=-$ $\langle x(s), \vec{n}(s)\rangle$, i.e.

$$
m(A)=\frac{1}{2} \int_{0}^{L} p(s) d s
$$

Proposition (see [5]). Let Γ be an arbitrary closed, convex, embedded C^{2}-curve with curvature k and let the surface energy density f be in C^{2} and π-periodic. Then

$$
\begin{equation*}
\int_{0}^{L} \frac{a(\theta(s))^{2} k(s)^{2}}{f(\theta(s))} d s \geq \frac{m\left(W_{f}\right)}{m(\operatorname{int} \Gamma)} F_{f}(\Gamma) . \tag{3}
\end{equation*}
$$

Moreover equality holds if and only if $\Gamma=\partial W_{f}$. Here $a=\left(f^{\prime \prime}+f\right) f$
As we would like to make the proof self-contained, we give the simple derivation of an important identity used below to calculate the isoperimetric quantities of selfsimilar curves, and we also give a lemma on the one to one correspondance of Wulff-shapes and their generating functions.

Lemma 1. Let Γ be an arbitrary closed, convex, embedded C^{2}-curve with curvature k and let the surface energy density f be in C^{2} with $a=\left(f^{\prime \prime}+f\right) f$ and allowing a Wulff-shape. Then

$$
\begin{equation*}
F_{f}(\Gamma)=\int_{0}^{L} \frac{p(s)}{f(\theta(s))} a(\theta(s)) k(s) d s \tag{4}
\end{equation*}
$$

Proof. Inserting $\left\langle x^{\prime}, x^{\prime}\right\rangle=1$ in the definition of $F_{f}(\Gamma)$ and integrating by parts we have
$F_{f}(\Gamma)=-\int_{0}^{L}\left\langle\left(f(\theta(s)) x^{\prime}(s)\right)^{\prime}, x(s)\right\rangle d s$

$$
=-\int_{0}^{L} f(\theta(s)) k(s)\langle\vec{n}(s), x(s)\rangle d s+\int_{0}^{L} f^{\prime}(\theta(s))(\langle\vec{n}(s), x(s)\rangle)^{\prime} d s
$$

due to $x^{\prime \prime}=k \vec{n}$ and $\left\langle\vec{n}, x^{\prime}\right\rangle=0$. Another integration by parts yields

$$
\begin{aligned}
F_{f}(\Gamma) & =-\int_{0}^{L}\left(f(\theta(s))+f^{\prime \prime}(\theta(s))\right) k(s)\langle\vec{n}(s), x(s)\rangle d s \\
& =\int_{0}^{L} \frac{a(\theta(s))}{f(\theta(s))} k(s) p(s) d s .
\end{aligned}
$$

Lemma 2. Let $f_{i} \in C_{+}^{2}(\boldsymbol{T}), f_{i}^{\prime \prime}+f_{i}>0, i=1,2$, and let the Wulffshapes generated by f_{1} and f_{2} be identical, i.e. $W_{f_{1}}=W_{f_{2}}$. Then $f_{1}=f_{2}$.

Proof. This follows from elementary facts from convex analysis (see for instance [11]). Define

$$
\bar{f}_{i}(q)=|q| f_{i}(\theta(q)) \quad \text { for } q \in \boldsymbol{R}^{2}
$$

Here $\theta(q)$ denotes the argument of q. If $f_{i}^{\prime \prime}+f_{i}>0$, then \bar{f}_{i} is a convex function (see e.g. [8], Appendix B). Moreover the complex conjugate of \bar{f}_{i}

$$
\bar{f}_{i}^{*}\left(q^{*}\right):=\sup _{q \in \boldsymbol{R}^{2}}\left\{\left\langle q, q^{*}\right\rangle-\bar{f}_{i}(q)\right\}
$$

equals an indicator function of W_{f}, i.e.

$$
\bar{f}_{i}^{*}\left(q^{*}\right)= \begin{cases}0, & \text { if } q^{*} \in W_{f_{i}} \\ \infty, & \text { otherwise }\end{cases}
$$

Thus $\bar{f}_{1}^{*}=\bar{f}_{2}^{*}$ by the assumption, and so also $\bar{f}_{1}^{* *}=\bar{f}_{2}^{* *}$ holds. But as the \bar{f}_{i} are convex, the second conjugate equals the function itself, which means $f_{1}=f_{2}$.

Proof of the uniqueness result. Suppose there are two solutions, so (1), and consequently two decompositions of $a(\theta)$

$$
a(\theta)=\left(f_{i}^{\prime \prime}(\theta)+f_{i}(\theta)\right) f_{i}(\theta), \quad i=1,2 .
$$

Now ${ }^{\text {let }} \Gamma$ be any selfsimilar solution of $V=a(\theta) k$. Then Γ solves

$$
\begin{equation*}
p(s)=-\langle x(s), \vec{n}(s)\rangle=a(\theta(s)) k(s) \tag{5}
\end{equation*}
$$

By Lemma 1 and the Gage inequality

$$
F_{f_{i}}(\Gamma)=\int_{0}^{L} \frac{a(\theta(s))^{2} k(s)^{2}}{f_{i}(\theta(s))} d s \geq \frac{m\left(W_{f_{i}}\right)}{m(\operatorname{int} \Gamma)} F_{f_{i}}(\Gamma)
$$

But the area of Γ is given by

$$
m(\operatorname{int} \Gamma)=\frac{1}{2} \int_{0}^{L} a(\theta(s)) k(s) d s=\frac{1}{2} \int_{0}^{2 \pi} a(\theta) d \theta=m\left(W_{f_{i}}\right)
$$

Therefore equality holds in the Gage inequality, which is only possible for $\Gamma=W_{f_{i}}$. Using Lemma 2 we immediately conclude $f_{1}=f_{2}$.

Remarks. (i) The problem (1) was also studied in [5] and [7]. However, they have to assume that a is smooth in order to study a related parabolic partial differential equation. Our proof is more direct and requires only boundedness of $a(\theta)$.
(ii) Another proof of the uniqueness can be given: Suppose there exist two. different solutions f and u to (1), the corresponding curves denoted by Γ_{f} and Γ_{u}, respectively. Regard f as the new surface energy density. Similar to the above argument one can show that both curves minimize the isoperimetric quantity $F_{f}(\Gamma)^{2}-4 m\left(W_{f}\right) m$ (int Γ). So by the Wulff-theorem (in case of curves see for instance [1]) they both must be W_{f}. Thus $\Gamma_{u}=\Gamma_{f}$
and $u=f$.
Although quite similar to the proof given before, this proof makes use of a highly nontrivial result, the Wulff-theorem, whereas the other one uses simple convex analysis instead.

References

[1] B. Dacorogna and C. E. Pfister: Wulff-theorem and best constant in Sobolev inequality. J. Math. Pure. Appl., 71, 97-118 (1992).
[2] C. Dohmen, Y. Giga and N. Mizoguchi: Existence of selfsimilar shrinking curves for anisotropic mean curvature equations (preprint).
[3] M. Gage: An isoperimetric inequality with application to curve shortening. Duke Math. J. , 50, 1225-1229 (1983).
[4] -: Curve shortening makes convex curves circular. Inv. Math., 76, 357-364 (1984).
[5] -: Evolving plane curves by curvature in relative geometries. Duke Math. J., 72, 441-466 (1993).
[6] M. Gage and R. S. Hamilton: The heat equations shrinking convex plane curves. J. Diff. Geometry, 23, 69-96 (1986).
[7] M. Gage and Yi Li: Evolving plane curves by curvature in relative geometries. II. Duke Math. J. (to appear).
[8] Y. Giga and N. Mizoguchi: Existence of periodic solutions for equations of evolving curves. SIAM J. Math. Anal. (to appear).
[9] M. Grayson: The heat equation shrinks embedded plane curves to points. J. Diff. Geometry, 26, 285-344 (1987).
[10] M. E. Gurtin: Thermodynamics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993).
[11] R. T. Rockfellar: Convex Analysis. Princeton University Press, Princeton (1.972).
[12] H. M. Soner: Motion of a set by the curvature of its boundary. J. Diff. Eq., 101, 313-393 (1993).

