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Selfsimilar Shrinking Curves for Anisotropic Curvature
Flow Equations

By Claus DOHMEN *) and Yoshikazu GIGA **)

(Communicated by Kiyosi ITS), M.J.A., Sept. 12, 1994)

We consider a simple looking ordinary differential equation of the form
a(O)

(1) u"+u 0in/

with a given positive function a(O). This equation arises in describing
selfsimilar solutions of anisotropic curvature flow equations. Since 0 is the
argument of the normal of the curve, it is natural to impose 2zc-periodicity
for a(O) in (1) and to ask for existence and uniqueness of 2zc-periodic solu-
tions.

The physical background of the above problem is an evolution equation
for embedded closed curves {Ft} t>0 in R (see [10]):

Consider an equation for Ft, where the normal velocity V is given by the
curvature k weighted by a direction-dependent factor a(O), i.e.

V a(O)k, a(O) fl(o)-m(’"(O) + 7(0)),
where /5 and 7."+ 7. are assumed to be positive, so that the equation is
parabolic. 7" is called the surface energy density and / is called the kinetic
coefficient.

In case a(O) const, it is well known (see [3], [4], [6] and [9]) that any
initial curve becomes convex, after this it extincts in finite time, and that the
type of shrinking is asymptotically similar to that of a shrinking circle C
(2(t.- t)) 1/z C, where C denotes the unit circle centered at the origin.
(Here the time t, is the extinction time and 2C denotes the dilation of C with
multiplier/.) The curvature of the circle then is a solution of (1).

In case of more general a(O), it was shown in [12] that selfsimilar solu-
tions, i.e. solutions satisfying

F, (2(t. t))1 F
and thereby equation (1), exist if /5(0)7"(0) const. Then f’ defined as the
boundary of the so-called Wulff-Shape Wr, i.e.
(2) Wr "= {: /{ :.n(cr) <_ 7"(0) for all cr /},
yields a solution /’t of the evolution problem. Here n (a) denotes a unit
vector whose argument equals o.

Our existence result now shows that such selfsimilar solutions exist for
arbitrary positive a(O). To simplify the notation we notice that a 2zc-
periodic function can be regarded as a function on the flat torus T "=

//2zcZ. Thus we define
C+(T) {u C2(1) u(O + 2zc) u(O) for all 0 /, u > 0}.
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Main existence theorem. Assume that a(O) is a positive, continuous func-
tion on . Then there is a function u CZ+( solving (1).

The proof is based on a-priori estimates and a continuity method. We
can derive a-priori bounds for solutions of (1), that only depend on the
bounds of a(O) from below and above. This enables us to apply a continuity
method connecting the well known case a(0) ------ const, and the case of gener-
al a(O). For details we would like to refer to [2].

Concerning uniqueness, we unfortunately have to make an additional
assumption on a(0):

Uniqueness theorem. Let a(O) be a positive, continuous and c-periodic

function in i. Then the solution of(l) is unique.
The main tools in proving the result is a generalization of an

isoperimetric inequality by Gage. This result requires the 7c-periodicity of
a(O).

Let us first introduce some notation: We denote the area of a set A by
m(A), the interior of a closed curve F by int F, the length of a curve F by
L and its surface energy with respect to some surface energy density f by

F(F) f(O(s))ds.

Here s denotes the arclength parameter and O(s) is the argument of at the
point x(s) o the curve. We note also that the area re(A), using integration
by parts, can be expressed as an integral over the scalar product of the posi-
tion vector and the normal , the so-called support unction p(s)-----
(x(s), (s)), i.e.

re(A) -ff p(s)ds.

Prlst|n (see [5]). Let F be an arbitrary closed, convex, embedded
C-crve with crvatre k and let the surface energy density f be in C and
r-periodic. Then

a(O(s))k(s)
(3) f(O(s)) ds > m(W)

m(int/3 F/(F).
Moreover equality holds if and only if ["-- OW. Here a (f" -k f)f

As we would like to make the proof self-contained, we give the simple
derivation of an important identity used below to calculate the isoperimetric
quantities of selfsimilar curves, and we also give a lemma on the one to one
correspondance of Wulff-shapes and their generating functions.

Lemma 1. Let I" be an arbitrary closed, convex, embedded C-curve with
curvature k and let the surface energy density f be in C with a (f" -+- f)f
and allowing a Wulff-shape. Then

p(s)
(4) F(F) f(O(s)) a(O(s))k(s)ds.

Proof. Inserting (x’, x’) 1 in the definition of F(F) and integrating
by parts we have

F:(ID <(f(O(s))x’(s))’, x(s)> ds
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f(O(s))k(s) ((s),x(s))ds+ f’(O(s))(((s),x(s)))’ds,

due to x" kg and (r, x’) 0. Another integration by parts yields

Fi(l") (f(O(s)) + f"(O(s)))k(s) (a(s), x(s))ds
, a(O(s))
f(O(s)) k(s)p(s)ds.

Lemma 2. Let f C+z (T), f[’ + f > 0, i = 1,2, and let the Wulff-
shapes generated by fx and f be identical, i.e. Wi- Wh. Then f f.

Proof. This follows from elementary facts from convex analysis (see for
instance [11]). Define

f,(q) q f(O(q)) forq e Rz.
Here O(q) denotes the argument of q. If fi"+ f > 0, then fi is a convex func-
tion (see e.g. [8], Appendix B). Moreover the complex conjugate of fi

f’ (q*) "= sup { (q, q*) f (q) }
qR

equals an indicator function of W, i.e.

{fF(q*) 0, ifq W],,
co, otherwise

Thus f* = f-* by the assumption, and so also f**= f* holds. But as the

f are convex, the second conjugate equals the function itself, which means

Proof of the uniqueness result. Suppose there are two solutions, so (1),
and consequently two decompositions of a(O)

a(O) (f{’(O) + fi(O))fi(O), i 1,2.
Now’let/" be any selfsimilar solution of V a(O)k. Then F solves
(5) p(s) (x(s), (s)) a(O(s))k(s).
By Lemma 1 and the Gage inequality

L a(O(s))2k(s) m(Wy)
F:,(I-) f(O(s)) ds > m(int/3

But the area of/" is given by

m(int F) - a(O(s))k(s)ds -ff a(O)dO m(W,).
Therefore equality holds in the Gage inequality, which is only possible for
F W,. Using Lemma 2 we immediately conclude f ft..

Remarks. (i) The problem (1)was also studied in [51 and [71. However,
they have to assume that a is smooth in order to study a related parabolic
partial differential equation. Our proof is more direct and requires only
boundedness of a(O).

(if) Another proof of the uniqueness can be given" Suppose there exist

two. different solutions f and u to (1), the corresponding curves denoted by

F and F,, respectively. Regard f as the new surface energy density. Similar
to the above argument one can show that both curves mnimize the
isoperimetric quantity Fy(1-)z- 4m(W+/-)m(int13. So by the Wulff-theorem
(in case of curves see for instance [1]) they both must be We Thus Fu Fz
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and u =f
Although quite similar to the proof given before, this proof makes use of

a highly nontrivial, result, the Wulff-theorem, whereas the other one uses
simple convex analysis instead.
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